Laplace transforms: Simple Electrical Network: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(14 intermediate revisions by the same user not shown)
Line 44: Line 44:
Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in
Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in


<math>I_1(s)= \frac{25s+12500}{s(s^2+500s+2500)}=\frac{5}{2s}-\frac{5s+2475}{s^2+125s+20000}</math>
<math>I_1(s)= \frac{25s+12500}{s(s^2+500s+2500)}=\frac{5}{s}-\frac{5s+2475}{s^2+500s+2500}</math>


In order to make it nicer on us we need to complete the square
In order to make it nicer on us we need to complete the square as follows
Taking the Inverse Laplace transform yields


<math>\mathcal{L}^{-1}\left\{I_1(s)\right\}=\frac{5}{8}+\frac{39\sqrt{103}}{824}sin*(\frac{25}{2}\sqrt{103}*t)</math>
<math> s^2+500s+2500=0</math>


<math>\Rightarrow s^2+500s=-2500</math>


<math>\mathcal{L}^{-1}\left\{I_2(s)\right\}=</math>
<math>\Rightarrow s^2+500s+\left(\frac{500}{2}\right)^2=-2500+\left(\frac{500}{2}\right)^2</math>
 
<math>\Rightarrow s^2+500s+62500=6000</math>
 
<math>\Rightarrow (s+250)^2-(100\sqrt{6})^2=0</math>
 
Thus
 
<math>I_2(s)=\frac{5}{2s}-5\frac{s+250}{(s+250)^2-(100\sqrt{6})^2}-\frac{5\sqrt{6}}{12}\frac{100\sqrt{6}}{(s+250)^2-(100\sqrt{6})^2}</math>
 
 
Taking the Inverse Laplace transform gives
 
<math>\mathcal{L}^{-1}\left\{I_2(s)\right\}= i_2(t) =\frac{5}{2}-5e^{-250t}cosh100\sqrt{6}t-\frac{5\sqrt{6}}{12}5e^{-250t}sinh100\sqrt{6}t</math>
 
==Initial Value Theorem==
 
<math>\lim_{s \to \infty}sI(s)=f(0^+)</math>
 
<math>\lim_{s \to \infty} s\frac{25s+12500}{s(s^2+500s+2500)}=i(0)</math>
 
<math> \Rightarrow i(0)=0</math>
 
<math>\lim_{s \to \infty}s\frac{6250}{s(s^2+500s+2500)}=i(0)</math>
 
<math> \Rightarrow i(0)=0</math>
 
==Final Value Theorem==
 
<math>\lim_{s \to 0}sI(s)=f(\infty)</math>
 
<math>\lim_{s \to \infty} s\frac{25s+12500}{s(s^2+500s+2500)}=i(\infty)</math>
 
<math>\Rightarrow i(\infty)=0</math>
 
<math>\lim_{s \to 0}s\frac{6250}{s(s^2+500s+2500)}=i(\infty)</math>
 
<math>\Rightarrow i(\infty)=0</math>
 
==Bode Plots==
The following are bode plots for the transfer functions
 
 
 
[[Image:I1_.jpg|400px|thumb|left|<math>H(s)_1=\frac{25s+12500}{s(s^2+500s+2500)}</math>]]
 
 
 
[[Image:I2_.jpg|400px|thumb|left|<math>H(s)_2=\frac{6250}{s(s^2+500s+2500)}</math>]]

Latest revision as of 16:35, 13 December 2009

Problem Statement

Using the formulas

E(t)=LdiRdt+RiC
RCdiRdt+iRiC=0

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Solution

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

4di1dt+20i2=50

20(104)di2dt+i2i1=0

Applying the Laplace transform to each equation gives

4(s{i1}i1(0))+20{i2}=50

4sI1(s)+20I2(s)=50s

0.005(si2i2(0))+{i2}{i1}=0

500I1(s)+[s+500]I2(s)=0

Solving for I2(s)

I2(s)=6250s(s2+500s+2500)

We find the partial decomposition

Let I2(s)=6250s(s2+500s+2500)=As+Bs+Cs2+500s+2500

6250=A(s2+500s+2500)+(Bs+C)s

62500=As2+500As+2500A+Bs2+Cs

Comparing the coefficients we get

A=52,B=5,C=1250

Thus I2(s)=52s5s+1250s2+500s+2500

Now we do the same for I1 where we solve the function in terms of I1 and decomposing the partial fraction resulting in

I1(s)=25s+12500s(s2+500s+2500)=5s5s+2475s2+500s+2500

In order to make it nicer on us we need to complete the square as follows

s2+500s+2500=0

s2+500s=2500

s2+500s+(5002)2=2500+(5002)2

s2+500s+62500=6000

(s+250)2(1006)2=0

Thus

I2(s)=52s5s+250(s+250)2(1006)256121006(s+250)2(1006)2


Taking the Inverse Laplace transform gives

1{I2(s)}=i2(t)=525e250tcosh1006t56125e250tsinh1006t

Initial Value Theorem

limssI(s)=f(0+)

limss25s+12500s(s2+500s+2500)=i(0)

i(0)=0

limss6250s(s2+500s+2500)=i(0)

i(0)=0

Final Value Theorem

lims0sI(s)=f()

limss25s+12500s(s2+500s+2500)=i()

i()=0

lims0s6250s(s2+500s+2500)=i()

i()=0

Bode Plots

The following are bode plots for the transfer functions


Error creating thumbnail: File missing
H(s)1=25s+12500s(s2+500s+2500)


Error creating thumbnail: File missing
H(s)2=6250s(s2+500s+2500)