Laplace transforms: Simple Electrical Network: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 52: Line 52:
<math>\Rightarrow s^2+500s=-2500</math>
<math>\Rightarrow s^2+500s=-2500</math>


<math>\Rightarrow s^2+500s+[\frac{500}{2}]^2=-2500+(\frac{500}{2})^2</math>
<math>\Rightarrow s^2+500s+\left(\frac{500}{2}\right)^2=-2500+\left(\frac{500}{2}\right)^2</math>


<math>\Rightarrow s^2+500s+62500=6000</math>
<math>\Rightarrow s^2+500s+62500=6000</math>


<math>\Rightarrow (s^2+250)^2-(20\sqrt{15})^2=0</math)
<math>\Rightarrow (s+250)^2-(100\sqrt{6})^2=0</math>


we do this by divinding <math>(\frac{b}{2})^2</math>
Thus


Taking the Inverse Laplace transform yields
<math>I_2(s)=\frac{5}{2s}-5\frac{s+250}{(s+250)^2-(100\sqrt{6})^2}-\frac{5\sqrt{6}}{12}\frac{100\sqrt{6}}{(s+250)^2-(100\sqrt{6})^2}</math>


<math>\mathcal{L}^{-1}\left\{I_1(s)\right\}=\frac{5}{8}+\frac{39\sqrt{103}}{824}sin*(\frac{25}{2}\sqrt{103}*t)</math>


Taking the Inverse Laplace transform gives


<math>\mathcal{L}^{-1}\left\{I_2(s)\right\}=</math>
<math>\mathcal{L}^{-1}\left\{I_2(s)\right\}= i_2(t) =\frac{5}{2}-5e^{-250t}cosh100\sqrt{6}t-\frac{5\sqrt{6}}{12}5e^{-250t}sinh100\sqrt{6}t</math>


==Initial Value Theorem==
==Initial Value Theorem==
Line 71: Line 71:
<math>\lim_{s \to \infty}sI(s)=f(0^+)</math>
<math>\lim_{s \to \infty}sI(s)=f(0^+)</math>


<math>\lim_{s \to \infty} \frac{25s+12500}{s(s^2+500s+2500)}=i(0)</math>
<math>\lim_{s \to \infty} s\frac{25s+12500}{s(s^2+500s+2500)}=i(0)</math>


<math> \Rightarrow i(0)=0</math>
<math> \Rightarrow i(0)=0</math>


<math>\lim_{s \to \infty}\frac{6250}{s(s^2+500s+2500)}=i(0)</math>
<math>\lim_{s \to \infty}s\frac{6250}{s(s^2+500s+2500)}=i(0)</math>


<math> \Rightarrow i(0)=0</math>
<math> \Rightarrow i(0)=0</math>
Line 92: Line 92:


==Bode Plots==
==Bode Plots==
The following are bode plots for the transfer functions
[[Image:I1_.jpg|400px|thumb|left|<math>H(s)_1=\frac{25s+12500}{s(s^2+500s+2500)}</math>]]
[[Image:I2_.jpg|400px|thumb|left|<math>H(s)_2=\frac{6250}{s(s^2+500s+2500)}</math>]]

Latest revision as of 16:35, 13 December 2009

Problem Statement

Using the formulas

E(t)=LdiRdt+RiC
RCdiRdt+iRiC=0

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Solution

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

4di1dt+20i2=50

20(104)di2dt+i2i1=0

Applying the Laplace transform to each equation gives

4(s{i1}i1(0))+20{i2}=50

4sI1(s)+20I2(s)=50s

0.005(si2i2(0))+{i2}{i1}=0

500I1(s)+[s+500]I2(s)=0

Solving for I2(s)

I2(s)=6250s(s2+500s+2500)

We find the partial decomposition

Let I2(s)=6250s(s2+500s+2500)=As+Bs+Cs2+500s+2500

6250=A(s2+500s+2500)+(Bs+C)s

62500=As2+500As+2500A+Bs2+Cs

Comparing the coefficients we get

A=52,B=5,C=1250

Thus I2(s)=52s5s+1250s2+500s+2500

Now we do the same for I1 where we solve the function in terms of I1 and decomposing the partial fraction resulting in

I1(s)=25s+12500s(s2+500s+2500)=5s5s+2475s2+500s+2500

In order to make it nicer on us we need to complete the square as follows

s2+500s+2500=0

s2+500s=2500

s2+500s+(5002)2=2500+(5002)2

s2+500s+62500=6000

(s+250)2(1006)2=0

Thus

I2(s)=52s5s+250(s+250)2(1006)256121006(s+250)2(1006)2


Taking the Inverse Laplace transform gives

1{I2(s)}=i2(t)=525e250tcosh1006t56125e250tsinh1006t

Initial Value Theorem

limssI(s)=f(0+)

limss25s+12500s(s2+500s+2500)=i(0)

i(0)=0

limss6250s(s2+500s+2500)=i(0)

i(0)=0

Final Value Theorem

lims0sI(s)=f()

limss25s+12500s(s2+500s+2500)=i()

i()=0

lims0s6250s(s2+500s+2500)=i()

i()=0

Bode Plots

The following are bode plots for the transfer functions


Error creating thumbnail: File missing
H(s)1=25s+12500s(s2+500s+2500)


Error creating thumbnail: File missing
H(s)2=6250s(s2+500s+2500)