Coupled Oscillator: Spring Pendulums: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
Line 5: Line 5:
===Solution===
===Solution===
----
----
By definition, the the state equation is stated as

<math>
\underline{\dot{x}} = \widehat{A} \, \underline{x} + \widehat{B} \, \underline{u}
</math>


Now, consider the motion equations described in the Solution section,


<math>m_1\ddot{x}_1+k_1x_1-k_2(x_2-x_1)=m_1\ddot{x}_1+k_1x_1-k_2x_2+k_2x_1=0</math>

<math>m_2\ddot{x}_2+k_2(x_2-x_1)-k_3x_2=m_2\ddot{x}_2+k_2x_2-k_2x_1-k_3x_2=0</math>


Solving for <math>\ddot{x}_1</math> and <math>\ddot{x}_2</math> yields,


:<math>\ddot{x}_1=-\dfrac{k_1}{m_1}x_1+\dfrac{k_2}{m_1}x_2-\dfrac{k_2}{m_1}x_1</math>

:<math>\ddot{x}_2=\dfrac{-k_2}{m_2}x_2+\dfrac{k_2}{m_2}x_1+\dfrac{k_3}{m_2}x_2</math>


Finally, we let <math>x_1 \frac{}{}</math>, <math>\dot{x}_1 \frac{}{}</math>, <math>x_2 \frac{}{}</math>, and <math>\dot{x_2} \frac{}{}</math> be the state variables. Thus,


<math>
\begin{bmatrix}
\dot{x}_1 \\
\ddot{x}_1 \\
\dot{x}_2 \\
\ddot{x}_2
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 & 0 \\
-\frac{1}{m_1}(k_1+k_2) & 0 & \frac{k_2}{m_1} & 0 \\
0 & 0 & 0 & 1 \\
\frac{k_2}{m_2} & 0 & \frac{1}{m_2}(k_3-k_2) & 0
\end{bmatrix}

\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}
</math>





Latest revision as of 16:56, 13 December 2009

Problem Statement


Use State Space methods to write up the solution to a coupled pendulum problem. Describe the eigen-modes of the system.

Solution


By definition, the the state equation is stated as


Now, consider the motion equations described in the Solution section,



Solving for and yields,



Finally, we let , , , and be the state variables. Thus,




Created by Kendrick Mensink