Coupled Oscillator: Hellie: Difference between revisions
Jump to navigation
Jump to search
(New page: ===Problem Statement===) |
|||
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
===Problem Statement=== |
===Problem Statement=== |
||
'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential''' |
|||
[[Image:Coupled_Oscillator.jpg]] |
|||
'''Initial Conditions:''' |
|||
:<math>m_1= 10 kg\,</math> |
|||
:<math>m_2 = 10 kg\,</math> |
|||
:<math>k1=100 N/m\,</math> |
|||
:<math>k2=150 N/m\,</math> |
|||
:<math>k3=100 N/m\,</math> |
|||
'''F=ma''' |
|||
:<math>\ddot{x_1}=\frac{x_1(k_1-k_2)}{m_1}-\frac{x_2*k_1}{m_1}\,</math> |
|||
:<math>\ddot{x_2}=\frac{x_2(k_1+k_2)}{m_2}-\frac{x_1*k_1}{m_2}\,</math> |
|||
'''State Equations''' |
|||
<math> |
|||
\begin{bmatrix} |
|||
\dot{x_1} \\ |
|||
\ddot{x_1} \\ |
|||
\dot{x_2} \\ |
|||
\ddot{x_2} |
|||
\end{bmatrix}\, |
|||
</math> |
|||
= |
|||
<math> |
|||
\begin{bmatrix} |
|||
0&1&0&0 \\ |
|||
\frac{(k_1-k_2)}{m_1}&0&\frac{-k_1}{m_1}&0 \\ |
|||
0&0&0&1 \\ |
|||
\frac{-k_1}{m_2}&0&\frac{(k_1+k_2)}{m_2}&0 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
x_1 \\ |
|||
\dot{x}_1 \\ |
|||
x_2 \\ |
|||
\dot{x}_2 |
|||
\end{bmatrix} |
|||
+ |
|||
\begin{bmatrix} |
|||
0&0&0&0 \\ |
|||
0&0&0&0 \\ |
|||
0&0&0&0 \\ |
|||
0&0&0&0 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
0\\ |
|||
0\\ |
|||
0\\ |
|||
0 |
|||
\end{bmatrix} |
|||
</math> |
|||
'''With the numbers...''' |
|||
<math> |
|||
\begin{bmatrix} |
|||
\dot{x_1} \\ |
|||
\ddot{x_1} \\ |
|||
\dot{x_2} \\ |
|||
\ddot{x_2} |
|||
\end{bmatrix}\, |
|||
</math> |
|||
= |
|||
<math> |
|||
\begin{bmatrix} |
|||
0&1&0&0 \\ |
|||
\frac{(-50 N/m)}{10 kg}&0&\frac{-100 N/m}{10 kg}&0 \\ |
|||
0&0&0&1 \\ |
|||
\frac{-100 N/m}{10 kg}&0&\frac{(250 N/m)}{10 kg}&0 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
x_1 \\ |
|||
\dot{x}_1 \\ |
|||
x_2 \\ |
|||
\dot{x}_2 |
|||
\end{bmatrix} |
|||
</math> |
|||
<math> |
|||
\begin{bmatrix} |
|||
\dot{x_1} \\ |
|||
\ddot{x_1} \\ |
|||
\dot{x_2} \\ |
|||
\ddot{x_2} |
|||
\end{bmatrix}\, |
|||
</math> |
|||
= |
|||
<math> |
|||
\begin{bmatrix} |
|||
0&1&0&0 \\ |
|||
-5&0&-10&0 \\ |
|||
0&0&0&1 \\ |
|||
-10&0&25&0 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
x_1 \\ |
|||
\dot{x}_1 \\ |
|||
x_2 \\ |
|||
\dot{x}_2 |
|||
\end{bmatrix} |
|||
</math> |
|||
'''Eigenvalues''' |
|||
:<math>\lambda_1=-5.29412\,</math> |
|||
:<math>\lambda_2=2.83333i\,</math> |
|||
:<math>\lambda_3= -2.83333i\,</math> |
|||
:<math>\lambda_4=0\,</math> |
|||
'''Eigenvectors''' |
|||
:<math>k_1=\begin{bmatrix} |
|||
-.05379\\ |
|||
.28475 \\ |
|||
.17764 \\ |
|||
-.94046 |
|||
\end{bmatrix}</math> |
|||
:<math>k_2=\begin{bmatrix} |
|||
-.31854i\\ |
|||
.90253 \\ |
|||
-.09645i\\ |
|||
.27326 |
|||
\end{bmatrix}</math> |
|||
:<math>k_3=\begin{bmatrix} |
|||
.31854i\\ |
|||
.90253 \\ |
|||
.09645i \\ |
|||
.27326 |
|||
\end{bmatrix}</math> |
|||
:<math>k_4=\begin{bmatrix} |
|||
-.05379\\ |
|||
-.28475 \\ |
|||
.17764 \\ |
|||
.94046 |
|||
\end{bmatrix}</math> |
|||
'''Standard Equation''' |
|||
:<math>x=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math> |
|||
:<math>\ x=c_1</math><math>\begin{bmatrix} |
|||
-.05379\\ |
|||
.28475 \\ |
|||
.17764 \\ |
|||
-.94046 |
|||
\end{bmatrix}\,</math><math>e^{-5.29412}+ c_2\,</math><math> |
|||
\begin{bmatrix} |
|||
-.31854i\\ |
|||
.90253 \\ |
|||
-.09645i\\ |
|||
.27326 |
|||
\end{bmatrix}\,</math><math>e^{2.83333i}+ c_3\,</math><math>\begin{bmatrix} |
|||
.31854i\\ |
|||
.90253 \\ |
|||
.09645i \\ |
|||
.27326 |
|||
\end{bmatrix}\,</math><math>e^{-2.83333i}+ c_4\,</math><math>\begin{bmatrix} |
|||
-.05379\\ |
|||
-.28475 \\ |
|||
.17764 \\ |
|||
.94046 |
|||
\end{bmatrix}\, |
|||
</math><math>e^{0}\,</math> |
|||
'''Eigenmodes''' |
|||
:There are two eigenmodes for the system |
|||
::1) m1 and m2 oscillating together |
|||
::2) m1 and m2 oscillating at exactly a half period difference |
|||
'''Matrix Exponential using transformation z=Tx''' |
|||
<math>T^{-1}=[k_1|k_2|k_3|k_4]\,</math> |
|||
<math>z=Tx\,</math> |
|||
<math>\dot{z}=TAT^{-1}z \,</math> |
|||
<math>\dot{z}=\,</math> |
|||
<math>\begin{bmatrix} |
|||
-5.2941&0&0&0 \\ |
|||
0&2.833i&0&0 \\ |
|||
0&0&-2.83333i&0 \\ |
|||
0&0&0&5.2941 |
|||
\end{bmatrix}\, |
|||
</math> |
|||
<math>z\,</math> |
|||
<math>B=TAT^{-1}=\begin{bmatrix} |
|||
-5.2941&0&0&0 \\ |
|||
0&2.833i&0&0 \\ |
|||
0&0&-2.83333i&0 \\ |
|||
0&0&0&5.2941 |
|||
\end{bmatrix}\,</math> |
|||
<math>z=e^{Bt}z(0)\,</math> |
|||
<math>e^{Bt}=\begin{bmatrix} |
|||
e^{-5.2941t}&0&0&0 \\ |
|||
0&e^{2.833it}&0&0 \\ |
|||
0&0&e^{-2.83333it}&0 \\ |
|||
0&0&0&e^{5.2941t} |
|||
\end{bmatrix}\,</math> |
|||
<math>x=T^{-1}z\,</math> |
|||
<math>x=T^{-1}e^{Bt}Tx(0)\,</math> |
|||
<math>e^{Pt}=T^{-1}e^{Bt}T\,</math> |
|||
<math>e^{Pt}=\,</math>lots of variables |
|||
'''Another way to solve using the Matrix exponential''' |
|||
<math>e^{At}=\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\}\,</math> |
|||
<math>[SI-A]\,</math> |
|||
= |
|||
<math> |
|||
\begin{bmatrix} |
|||
S&1&0&0 \\ |
|||
\frac{(-50 N/m)}{15 kg}&S&\frac{-100 N/m}{15 kg}&0 \\ |
|||
0&0&S&1 \\ |
|||
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&S |
|||
\end{bmatrix} |
|||
</math> |
|||
<math>[SI-A]^{-1} =\,</math> (something too large for my calculator to display or that I want to type out) |
|||
<math>\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\} = \,</math>(something too large for my calculator to display or that I want to type out) |
|||
Written by: Andrew Hellie |
Latest revision as of 22:28, 13 December 2009
Problem Statement
Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential
Initial Conditions:
F=ma
State Equations
=
With the numbers...
=
=
Eigenvalues
Eigenvectors
Standard Equation
Eigenmodes
- There are two eigenmodes for the system
- 1) m1 and m2 oscillating together
- 2) m1 and m2 oscillating at exactly a half period difference
Matrix Exponential using transformation z=Tx
lots of variables
Another way to solve using the Matrix exponential
=
(something too large for my calculator to display or that I want to type out)
(something too large for my calculator to display or that I want to type out)
Written by: Andrew Hellie