Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
Line 242: Line 242:


<math>e^{Bt}=\begin{bmatrix}
<math>e^{Bt}=\begin{bmatrix}
e^{-5.2941}&0&0&0 \\
e^{-5.2941t}&0&0&0 \\
0&e^{2.833i}&0&0 \\
0&e^{2.833it}&0&0 \\
0&0&e^{-2.83333i}&0 \\
0&0&e^{-2.83333it}&0 \\
0&0&0&e^{5.2941}
0&0&0&e^{5.2941t}
\end{bmatrix}\,</math>
\end{bmatrix}\,</math>


<math>x=T^{-1}z
<math>x=T^{-1}z\,</math>


<math>x=T^{-1}e^{Bt}Tx(0)\,</math>
<math>x=T^{-1}e^{Bt}Tx(0)\,</math>

Latest revision as of 22:28, 13 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential

 Coupled Oscillator.jpg

Initial Conditions:

F=ma

State Equations

=

With the numbers...


=


=


Eigenvalues


Eigenvectors




Standard Equation

Eigenmodes

There are two eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference


Matrix Exponential using transformation z=Tx






lots of variables

Another way to solve using the Matrix exponential



=


(something too large for my calculator to display or that I want to type out)


(something too large for my calculator to display or that I want to type out)

Written by: Andrew Hellie