Coupled Oscillator: Pulley: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
(New page: ==Coupled Oscillator: Pulley System== ===Problem=== Given the system shown, with all initial positions set so that gravity is accounted for and no motion is occurring, find the response. ...)
 
Line 17: Line 17:
<math>\sum F=ma </math>
<math>\sum F=ma </math>


<math>-k_1x_1-k_2x_1=m_1\ddot{x_1}</math>
<math>-k_1x_1-k_2(x_1-x_2)=m_1\ddot{x_1}</math>


<math>\dfrac{-x_1(k_1+k_2)}{m_1}=\ddot{x_1}</math>
<math>\dfrac{-x_1(k_1+k_2)-x_2k_2}{m_1}=\ddot{x_1}</math>


On the right, we have
On the right, we have
Line 25: Line 25:
<math>\sum F=ma </math>
<math>\sum F=ma </math>


<math>k_2x_2=m_2\ddot{x_2}</math>
<math>-k_2(x_2-x_1)=m_2\ddot{x_2}</math>


<math>\dfrac{k_2x_2}{m_2}=\ddot{x_2}</math>
<math>\dfrac{-k_2(x_2-x_1)}{m_2}=\ddot{x_2}</math>


So, our state space matrices are
So, our state space matrices are
Line 37: Line 37:
=
=
\begin{bmatrix}
\begin{bmatrix}
0 & -\dfrac{k_1+k_2}{m_1} & 0 & 0 \\
0 & -\dfrac{k_1+k_2}{m_1} & 0 & -\dfrac{k_2}{m_1} \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & \dfrac{k_2}{m_2} \\
0 & \dfrac{k_2}{m_2} & 0 & -\dfrac{k_2}{m_2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\end{bmatrix}
Line 60: Line 60:
=
=
\begin{bmatrix}
\begin{bmatrix}
0 & -6 & 0 & 0 \\
0 & -6 & 0 & -5 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2.5 \\
0 & 2.5 & 0 & -2.5 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\end{bmatrix}
Line 71: Line 71:
Using any number of different computer utilities, we can calculate the eigenvalues and eigenvectors of the coefficient matrix quickly and easily.
Using any number of different computer utilities, we can calculate the eigenvalues and eigenvectors of the coefficient matrix quickly and easily.


<math>\lambda_1=j2.45</math><br>
<math>\lambda_1=0.705+j2.179</math><br>
<math>\lambda_2=-j2.45</math><br>
<math>\lambda_2=0.705-j2.179</math><br>
<math>\lambda_3=1.58</math><br>
<math>\lambda_3=-0.705+j2.179</math><br>
<math>\lambda_4=-1.58</math><br><br>
<math>\lambda_4=-0.705-j2.179</math><br><br>


<math>k_1 \varpropto \begin{bmatrix} 0.926 \\ -j0.378 \\ 0 \\ 0 \\ \end{bmatrix}</math><br>
<math>k_1 \varpropto \begin{bmatrix} 0.748 \\ 0.101-j0.311 \\ -0.262-j0.460 \\ -0.226+j0.047 \\ \end{bmatrix}</math><br>
<math>k_2 \varpropto \begin{bmatrix} 0.926 \\ j0.378 \\ 0 \\ 0 \\ \end{bmatrix}</math><br>
<math>k_2 \varpropto \begin{bmatrix} 0.748 \\ 0.101+j0.311 \\ -0.262+j0.460 \\ -0.226-j0.047 \\ \end{bmatrix}</math><br>
<math>k_3 \varpropto \begin{bmatrix} 0 \\ 0 \\ 0.845 \\ 0.535 \\ \end{bmatrix}</math><br>
<math>k_3 \varpropto \begin{bmatrix} 0.748 \\ -0.101-j0.311 \\ -0.262+j0.460 \\ 0.226+j0.047 \\ \end{bmatrix}</math><br>
<math>k_4 \varpropto \begin{bmatrix} 0 \\ 0 \\ -0.845 \\ 0.535 \\ \end{bmatrix}</math>
<math>k_4 \varpropto \begin{bmatrix} 0.748 \\ -0.101+j0.311 \\ -0.262-j0.460 \\ 0.226-j0.047 \\ \end{bmatrix}</math>

The full solution is

<math>\bar{x}=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math>

===Eigenmodes===
The four distinct eigenvalues mean there will be four eigenmodes (though two are similar). They are

1. The two masses moving in the same direction at all times (i.e. one up and the other down).
2. The two masses moving in opposite directions at all times (i.e. both up or down).
3. and 4. The masses moving at plus or minus 90 degrees of phase offset.

Revision as of 20:49, 14 December 2009

Coupled Oscillator: Pulley System

Problem

Given the system shown, with all initial positions set so that gravity is accounted for and no motion is occurring, find the response. The spring around the pulley is modeled as a single spring with constant .

PulleySystem.jpg


















Solution

We begin by writing the sum of forces equations for both blocks.

On the left, we have

On the right, we have

So, our state space matrices are

Now, suppose we impose the initial conditions as follows:
=10 kg
=20 kg
=10 N/m
=50 N/m

We now have

Using any number of different computer utilities, we can calculate the eigenvalues and eigenvectors of the coefficient matrix quickly and easily.









The full solution is

Eigenmodes

The four distinct eigenvalues mean there will be four eigenmodes (though two are similar). They are

1. The two masses moving in the same direction at all times (i.e. one up and the other down). 2. The two masses moving in opposite directions at all times (i.e. both up or down). 3. and 4. The masses moving at plus or minus 90 degrees of phase offset.