Laplace Transform: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
Brian.Roath (talk | contribs) No edit summary |
||
Line 24: | Line 24: | ||
:<math>F(s) = \mathcal{L} \left\{e^{at} t^n\right\}=\int_0^{\infty} e^{-st} e^{at} t^n \,dt = </math> <math> \frac {n!} {(s-a)^{n+1}} \mbox{ for}~n\ \mbox{= 1,2,...}</math> |
:<math>F(s) = \mathcal{L} \left\{e^{at} t^n\right\}=\int_0^{\infty} e^{-st} e^{at} t^n \,dt = </math> <math> \frac {n!} {(s-a)^{n+1}} \mbox{ for}~n\ \mbox{= 1,2,...}</math> |
||
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 |
|||
:<math>F(s) = \mathcal{L} \left\{te^{-t}\right\}=\int_0^{\infty} e^{-st} te^{-t} \,dt = </math> <math> \frac {1} {(s+1)^2} </math> |
|||
:<math>F(s) = \mathcal{L} \left\{1-e^{-t/T}\right\}=\int_0^{\infty} e^{-st} (1-e^{-t/T}) \,dt = </math> <math> \frac {1} {s(1+Ts)} </math> |
|||
:<math>F(s) = \mathcal{L} \left\{e^{at} sin(\omega t)\right\}=\int_0^{\infty} e^{-st} e^{at} sin(\omega t) \,dt = </math> <math> \frac {\omega} {(s-a)^2 + \omega^2} </math> |
|||
:<math>F(s) = \mathcal{L} \left\{e^{at} cos(\omega t)\right\}=\int_0^{\infty} e^{-st} e^{at} cos(\omega t) \,dt = </math> <math> \frac {s-a} {(s-a)^2 + \omega^2} </math> |
|||
:<math>F(s) = \mathcal{L} \left\{u(t)\right\}=\int_0^{\infty} e^{-st} u(t) \,dt = </math> <math> \frac {1} {s} </math> |
|||
:<math>F(s) = \mathcal{L} \left\{u(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) \,dt = </math> <math> \frac {e^{-as}} {s} </math> |
|||
:<math>F(s) = \mathcal{L} \left\{u(t-a) g(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) g(t-a) \,dt = </math> <math> e^{-as} G(s) </math> |
|||
:<math>F(s) = \mathcal{L} \left\{g'(t)\right\}=\int_0^{\infty} g'(t) \,dt = </math> <math> sG(s) - g(0) </math> |
Revision as of 18:28, 11 January 2010
Standard Form:
Sample Functions:
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4