Laplace Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 39: Line 39:
:<math>F(s) = \mathcal{L} \left\{u(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) \,dt = </math> <math> \frac {e^{-as}} {s} </math>
:<math>F(s) = \mathcal{L} \left\{u(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) \,dt = </math> <math> \frac {e^{-as}} {s} </math>


:<math>F(s) = \mathcal{L} \left\{u(t-a) g(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) g(t-a) \,dt = </math> <math> e^{-as} G(s) </math>
:<math>F(s) = \mathcal{L} \left\{u(t-a) g(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) g(t-a) \,dt = e^{-as} G(s) </math>


:<math>F(s) = \mathcal{L} \left\{g'(t)\right\}=\int_0^{\infty} g'(t) \,dt = </math> <math> sG(s) - g(0) </math>
:<math>F(s) = \mathcal{L} \left\{g'(t)\right\}=\int_0^{\infty} g'(t) \,dt = sG(s) - g(0) </math>

Revision as of 18:28, 11 January 2010

Standard Form:

Sample Functions:

    Normal   0               false   false   false      EN-US   X-NONE   X-NONE                                                     MicrosoftInternetExplorer4