Laplace Transform: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 44: | Line 44: | ||
:<math>F(s) = \mathcal{L} \left\{g^{(n)}(t)\right\}=\int_0^{\infty} e^{-st} g^{(n)}(t) \,dt = s^n \cdot G(s) - s^{n-1} \cdot g(0) - s^{n-2} \cdot g'(0) - ... - g^{(n-1)}(0) </math> |
:<math>F(s) = \mathcal{L} \left\{g^{(n)}(t)\right\}=\int_0^{\infty} e^{-st} g^{(n)}(t) \,dt = s^n \cdot G(s) - s^{n-1} \cdot g(0) - s^{n-2} \cdot g'(0) - ... - g^{(n-1)}(0) </math> |
||
:<math>F(s) = \mathcal{L} \left\{\int_0^{\t} g(t) \,dt \right\}=\int_0^{\t} e^{-st} g''(t) \,dt = s^2 \cdot G(s) - s \cdot g(0) - g'(0) </math> |
|||
==External Links== |
==External Links== |
Revision as of 18:42, 11 January 2010
Standard Form
Sample Functions
- Failed to parse (unknown function "\t"): {\displaystyle F(s) = \mathcal{L} \left\{\int_0^{\t} g(t) \,dt \right\}=\int_0^{\t} e^{-st} g''(t) \,dt = s^2 \cdot G(s) - s \cdot g(0) - g'(0) }