Class Notes 1-5-2010: Difference between revisions
Jump to navigation
Jump to search
Brian.Roath (talk | contribs) No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
:<math> \mathbf{\hat{v}} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math> |
:<math> \mathbf{\hat{v}} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math> |
||
:<math> \mathbf{\hat{v}} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math> |
:<math> \mathbf{\hat{v}} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math> |
||
:<math> \langle v_x, v_y\rangle</math> |
|||
:<math> \mathbf{\hat{u}} \cdot \mathbf{\hat{v}} = |\mathbf{\hat{u}}| |\mathbf{\hat{v}}| \cos\theta </math> |
|||
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math> |
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math> |
Revision as of 14:39, 17 January 2010
Subjects Covered
1) Linear Systems
2) Functions as Vectors
External Links
- [Class Notes.].
Authors
Colby Fullerton
Brian Roath