Class Notes 1-5-2010: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
Brian.Roath (talk | contribs) No edit summary |
||
Line 21: | Line 21: | ||
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math> |
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math> |
||
1) Use vector analogy |
|||
:<math> x(t) \cdot \sin \left( \frac {2\pi mt} {T} \right) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \cdot \sin \left( \frac {2\pi mt} {T} \right) \right] </math> |
|||
:<math> \int_{\frac {-T} {2}}^{\frac {T} {2}} x(t) \sin \left( \frac {2\pi mt} {T} \right) \,dt = v_m</math> |
|||
Revision as of 14:53, 17 January 2010
Subjects Covered
1) Linear Systems
2) Functions as Vectors
1) Use vector analogy
External Links
- [Class Notes.].
Authors
Colby Fullerton
Brian Roath