Fourier Example: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
(New page: Find the Fourier Series of the function: <br /> <center><math>\f(x)=begin{cases} 0,-pi<x<0 \end{cases} \ \ \ \ n=0,1,2,3\dots</math></center> <br /> :<math>\rho_X(x) = \begin{cases}...)
 
No edit summary
Line 1: Line 1:
Find the Fourier Series of the function:
Find the Fourier Series of the function:


:<math>f(x) = \begin{cases}0,& -\pi<x<0\\
<br />
\pi,& 0<x<\pi\\
\end{cases}</math>


:<math>b_n = \frac{1}{2}{\pi}\int_{0}^\pi \pi\sin(nx)\, dx, = \frac{1}{n}(1-cos(x\pi))=\frac{1}{n}(1-(-1)^n)</math>
<center><math>\f(x)=begin{cases}

0,-pi<x<0

\end{cases} \ \ \ \ n=0,1,2,3\dots</math></center>

<br />

:<math>\rho_X(x) = \begin{cases}\frac{1}{2},& \x=0,\\
\frac{1}{2},& \x=1,\\
0,& \text{otherwise} .\end{cases}</math>
<!-- -->

Revision as of 23:28, 18 January 2010

Find the Fourier Series of the function: