Class Notes 1-5-2010: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by one other user not shown)
Line 12: Line 12:




 
The individual component representation of vector <math> \vec{v} </math> in the x-direction.
:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math>
:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math>
The two-dimensional example of a vector in its components with the vector designations.
:<math> \vec{v} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math>
:<math> \vec{v} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math>
This is the summation used to represent the vector <math> \vec{v} </math> as having as many dimensions as needed to express its full value:
:<math> \vec{v} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math>
:<math> \vec{v} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math>
:<math> \langle v_x, v_y\rangle</math>
:<math> \langle v_x, v_y\rangle</math>
This is the equation for finding the distance between the two vectors <math> \vec{u} </math> and <math> \vec{v} </math> who are separated by angle <math> \theta </math>.
:<math> \vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos\theta </math>
:<math> \vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos\theta </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} (\mathbf{\hat{i}} \cdot \mathbf{\hat{i}}) + v_\mathrm{y} \mathbf{\hat{j}} \cdot \mathbf{\hat{i}} </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} (\mathbf{\hat{i}} \cdot \mathbf{\hat{i}}) + v_\mathrm{y} \mathbf{\hat{j}} \cdot \mathbf{\hat{i}} </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} </math>
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math>
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math>
:<math> \delta_\mathrm{i,m} \equiv \begin{cases} 1 & \mbox{if } i = m, \\ 0 & \mbox{else} \end{cases}</math>
:<math> \delta_\mathrm{i,m} \equiv \begin{cases} 1, & \mbox{if } i = m \\ 0, & \mbox{else} \end{cases}</math>


==Example==
==Example==
Line 43: Line 46:


==Reviewed By==
==Reviewed By==
*[[Gratias, Ryan|Ryan Gratias]]

Latest revision as of 12:37, 20 January 2010

Error creating thumbnail: File missing
Modeling functions as vectors. Using function approximations, the vector path is described.

This article covers the notes given in class on January 5, 2010.

Subjects Covered

1) Linear Systems

2) Functions as Vectors


Error creating thumbnail: File missing
Functions graphed in vector form.



The individual component representation of vector v in the x-direction.

vx=vi^

The two-dimensional example of a vector in its components with the vector designations.

v=vxi^+vyj^

This is the summation used to represent the vector v as having as many dimensions as needed to express its full value:

v=ivia^i
vx,vy

This is the equation for finding the distance between the two vectors u and v who are separated by angle θ.

uv=|u||v|cosθ
vi^=vx(i^i^)+vyj^i^
vi^=vx
va^m=ivia^ia^m=vm
δi,m{1,if i=m0,else

Example

Error creating thumbnail: File missing
Function waves with varying periods based on the function x(t) = x(t+T)

Given function: x(t)=x(t+T)

x(t)=n=1[bnsin((2πnT)t)]

1) Use vector analogy

x(t)sin(2πmtT)=n=1[bnsin((2πnT)t)sin(2πmtT)]
T2T2x(t)sin(2πmtT)dt=vm

External Links

Authors

Colby Fullerton

Brian Roath

Read By

Reviewed By