Magnetic Circuit: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Kirkbetz (talk | contribs)
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=Author: John Hawkins=
==Problem Statement==
==Problem Statement==


Line 8: Line 9:
First, we note that the problem statement is incomplete. Assume that the core has a relative permeability of 500.  Hence, for all magnetic sections excluding the air gap,
First, we note that the problem statement is incomplete. Assume that the core has a relative permeability of 500.  Hence, for all magnetic sections excluding the air gap,


<center><math>\mu=\mu_r\mu_0=(500)(4\pi\times10^{-7})</math></center>
<center><math>\mu=\mu_r\mu_0=(500)(4\pi\times10^{-7})=6.2832\times10^{-4}</math></center>


Also, as recommended in the text, we will neglect fringing.
Also, as recommended in the text, we will neglect fringing.
Line 18: Line 19:
! '''Section''' !! fg !! def !! ghc !! dc !! dabc  
! '''Section''' !! fg !! def !! ghc !! dc !! dabc  
|-
|-
| Length <math>l</math> (m)|| 0.01 || 0.555|| 0.555 || 0.48 || 1.4
| Length <math>l</math> (m)|| 0.01 || 0.555|| 0.555 || 0.48 || 1.38
|-
|-
| Area <math>A</math> (m<sup>2</sup>) || 0.0032 || 0.0032 || 0.0032 || 0.0096 || 8.0e-4
| Area <math>A</math> (m<sup>2</sup>) || 0.0032 || 0.0032 || 0.0032 || 0.0096 || 8.0e-4
|}
|}


We must now work backward from the air-gap, since the value of the flux-density is given there.  All units are understood to be standard units.   
We must now work backward from the air-gap, since the value of the flux-density is given there.  We need only employ the analagous equations to Ohm's Law, KVL, and KCL.  All units are standard units.   
<br />
<br />
'''Air Gap:'''
'''Air Gap:'''
<br />
<br />
<math>\mathcal{R}_{fg}=\frac{l_{fg}}{\mu A_fg} = 4973.6</math>
 
<center>
<math>\mathcal{R}_{fg}=\frac{l_{fg}}{\mu A_{fg}} = 4973.6</math>
<br />
<br />
<math>\Phi_{fg}=B_{fg}A_{fg}=3.2\times10^{-4}</math>
<math>\Phi_{fg}=B_{fg}A_{fg}=3.20\times10^{-4}</math>
<br />
<br />
<math>\mathcal{F}_{fg}=\mathcal{R}_{fg}\Phi_{fg}=1.5915</math>
<math>\mathcal{F}_{fg}=\mathcal{R}_{fg}\Phi_{fg}=1.5915</math>
</center>
<br />
<br />
<br />
<br />
'''Right Arms:'''
'''Right Arms:'''
<br />
<br />
<math>\Phi_{def}=\Phi_{ghc} = \Phi_{fg} = 3.2\times10^{-4}</math>
 
<center>
<math>\Phi_{def}=\Phi_{ghc} = \Phi_{fg} = 3.20\times10^{-4}</math>
<br />
<br />
<math>\mathcal{R}_{def}=\mathcal{R}_{ghc}=\frac{l_{def}}{\mu A_{def}}=276030</math>
<math>\mathcal{R}_{def}=\mathcal{R}_{ghc}=\frac{l_{def}}{\mu A_{def}}=2.7603\times10^5</math>
<br />
<br />
<math>\mathcal{F}_{def}=\mathcal{F}_{ghc}=\mathcal{R}_{def}\Phi_{def}=88.331</math>
<math>\mathcal{F}_{def}=\mathcal{F}_{ghc}=\mathcal{R}_{def}\Phi_{def}=88.331</math>
</center>
<br />
<br />
<br />
<br />
'''Center Column:'''
'''Center Column:'''
<br />
<br />
<center>
<math>\mathcal{F}_{dc}=\mathcal{F}_{def}+\mathcal{F}_{fg}+\mathcal{F}_{ghc}=178.25</math>
<math>\mathcal{F}_{dc}=\mathcal{F}_{def}+\mathcal{F}_{fg}+\mathcal{F}_{ghc}=178.25</math>
<br />
<br />
<math>\mathcal{R}_{dc}=\frac{l_{dc}}{\mu A_{dc}}=79577</math>
<math>\mathcal{R}_{dc}=\frac{l_{dc}}{\mu A_{dc}}=79,577</math>
<br />
<br />
<math>\Phi_{dc}=\frac{\mathcal{F}_{dc}}{\mathcal{R}_{dc}}=0.0022</math>
<math>\Phi_{dc}=\frac{\mathcal{F}_{dc}}{\mathcal{R}_{dc}}=0.0022</math>
</center>
<br />
<br />
<br />
<br />
'''Left Arm:'''
'''Left Arm:'''
<br />
<br />
<math>\Phi_{dabc}=\Phi_{dc}-\Phi_{def}=0.0019</math>
<center>
 
<math>\ \Phi_{dabc}=\Phi_{dc}-\Phi_{def}=0.0019</math>
<br />
<br />
<math>\mathcal{R}_{dabc}=\frac{l_{dabc}}{\mu A_{dabc}}=2.785\times 10^6</math>
<math>\mathcal{R}_{dabc}=\frac{l_{dabc}}{\mu A_{dabc}}=2.745\times 10^6</math>
<br />
<br />
<math>\mathcal{F}_{dabc}=\mathcal{F}_{dabc}\Phi_{dabc}=5347.6</math>
<math>\mathcal{F}_{dabc}=\mathcal{F}_{dabc}\Phi_{dabc}=5,271.2</math>
</center>
 
<br />
<br />
<br />
<br />
'''Conclusions:'''
'''Conclusions:'''
<br />
<br />
<math>\mathcal{F}_{Total}=\mathcal{F}_{dabc}+\mathcal{F}_{dc}+\mathcal{F}_{def}+\mathcal{F}_{fg}+\mathcal{F}_{ghc}=57041</math>
<center>
 
<math>\mathcal{F}_{Total}=\mathcal{F}_{dabc}+
 
\mathcal{F}_{dc}+\mathcal{F}_{def}+\mathcal{F}_{fg}+
 
\mathcal{F}_{ghc}=5,627.7</math>
<br />
<br />
<center>
<math>\mathbf{i=\frac{\mathcal{F}_{Total}}{N}=3.52 A}</math>
<math>\mathbf{i=\frac{\mathcal{F}_{Total}}{N}=3.57 A}</math>
</center>
</center>
<br />
<br />
Which is the quantity we were looking for.
<br />
Calculations were performed using the following [[Magnetic Circuit Matlab Script]].
Calculations were performed using the following [[Magnetic Circuit Matlab Script]].


Line 74: Line 103:


<references />
<references />
==Reviewed By==
Amy Crosby
[[Kirk Betz]]
==Read By==
==Comments==

Latest revision as of 12:42, 21 January 2010

Author: John Hawkins

Problem Statement

Error creating thumbnail: File missing

Problem 2.16 from Electric Machinery and Transformers, 3rd ed:

A magnetic circuit is given in Figure P2.16. What must be the current in the 1600-turn coil to set up a flux density of 0.1 T in the air-gap? All dimensions are in centimeters. Assume that magnetic flux density varies as

B=[1.5H/(750+H)]

.<ref>Guru and Huseyin, Electric Machinery and Transformers, 3rd ed. (New York: Oxford University Press, 2001), 129.</ref>

Solution

First, we note that the problem statement is incomplete. Assume that the core has a relative permeability of 500. Hence, for all magnetic sections excluding the air gap,

μ=μrμ0=(500)(4π×107)=6.2832×104

Also, as recommended in the text, we will neglect fringing.

The lengths and areas of each of the sections to be evaluated are given in the following table.

Table 1: Lengths and Areas for the pertinent secions of the magnetic circuit.
Section fg def ghc dc dabc
Length l (m) 0.01 0.555 0.555 0.48 1.38
Area A (m2) 0.0032 0.0032 0.0032 0.0096 8.0e-4

We must now work backward from the air-gap, since the value of the flux-density is given there. We need only employ the analagous equations to Ohm's Law, KVL, and KCL. All units are standard units.
Air Gap:


fg=lfgμAfg=4973.6
Φfg=BfgAfg=3.20×104
fg=fgΦfg=1.5915



Right Arms:

Φdef=Φghc=Φfg=3.20×104
def=ghc=ldefμAdef=2.7603×105
def=ghc=defΦdef=88.331



Center Column:

dc=def+fg+ghc=178.25
dc=ldcμAdc=79,577
Φdc=dcdc=0.0022



Left Arm:

Φdabc=ΦdcΦdef=0.0019
dabc=ldabcμAdabc=2.745×106
dabc=dabcΦdabc=5,271.2



Conclusions:

Total=dabc+dc+def+fg+ghc=5,627.7
i=TotalN=3.52A


Which is the quantity we were looking for.


Calculations were performed using the following Magnetic Circuit Matlab Script.

References

<references />

Reviewed By

Amy Crosby

Kirk Betz

Read By

Comments