Laplace Transform of a Triangle Wave: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 24: Line 24:
<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{-4te^{-st}dt}+\int_{.5}^{1.5}{4.5e^{-st}dt} \right]</math>
<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{-4te^{-st}dt}+\int_{.5}^{1.5}{4.5e^{-st}dt} \right]</math>


<math>\int_{}^{}{4te^{-st}}=\; L\left\{ 4t \right\}=\frac{4}{s^{2}}</math>
<math>\int_{-.5}^{.5}{4te^{-st}}=\; \frac{4e^{.5s}-2se^{.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math>


<math>\int_{}^{}{-4te^{-st}}=\; L\left\{ -4t \right\}=-\frac{4}{s^{2}}</math>
<math>\int_{}^{}{-4te^{-st}}=\; L\left\{ -4t \right\}=-\frac{4}{s^{2}}</math>

Revision as of 11:47, 25 January 2010

Triangle wave with period T=2 and amplitude A=2

This page is still in progress

Introduction

This article explains how to transform a periodic function (in this case a triangle wave). This is especially useful for analyzing circuits which contain triangle wave voltage sources.

Define F(t)

So,

DefinitionofF.jpg



Using the theorem for the transform of a periodic function,

Author

Reviewers

Readers