Laplace Transform of a Triangle Wave: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:triangle wave.jpg|500px|thumb|right|Triangle wave with period T=2 and amplitude A=2]]
[[Image:triangle wave.jpg|500px|thumb|right|Triangle wave with period T=2 and amplitude A=2]]
'''This page is still in progress'''
==Introduction==
==Introduction==


Line 11: Line 12:
So,
So,


[[Image:definitionofF.jpg|140px|left]]
<math>F\left( t \right)=\left\{\begin{array}{cc} 4t & -.5\leq t<.5 \\ -4t+4 & .5\leq t<1.5 \end{array}\right
</math>




Using the theorem for the transform of a periodic function,

<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{\left( -4t+4.5 \right)e^{-st}dt} \right]</math>

<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{-4te^{-st}dt}+\int_{.5}^{1.5}{4.5e^{-st}dt} \right]</math>

<math>\int_{-.5}^{.5}{4te^{-st}}=\; \frac{4e^{.5s}-2se^{.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math>

<math>\int_{.5}^{1.5}{-4te^{-st}}=\frac{6se^{-1.5s}+4e^{-1.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math>

<math>\int_{.5}^{1.5}{4.5e^{-st}}=\frac{4.5se^{-.5s}-4.5se^{-1.5s}}{s^{2}}</math>

<math>F\left( s \right)=\frac{1}{1-e^{-2s}}\left( \frac{-8e^{-.5s}+4e^{.5s}+4e^{-1.5s}}{s^{2}}+\frac{.5e^{-.5s}-2e^{.5s}-1.5e^{-1.5s}}{s} \right)</math>
==Author==
==Author==



Latest revision as of 13:00, 25 January 2010

Triangle wave with period T=2 and amplitude A=2

This page is still in progress

Introduction

This article explains how to transform a periodic function (in this case a triangle wave). This is especially useful for analyzing circuits which contain triangle wave voltage sources.

Define F(t)

So,

DefinitionofF.jpg



Using the theorem for the transform of a periodic function,

Author

Reviewers

Readers