Laplace Transform of a Triangle Wave: Difference between revisions
Jump to navigation
Jump to search
Michaelvier (talk | contribs) No edit summary |
Michaelvier (talk | contribs) No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 24: | Line 24: | ||
<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{-4te^{-st}dt}+\int_{.5}^{1.5}{4.5e^{-st}dt} \right]</math> |
<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{-4te^{-st}dt}+\int_{.5}^{1.5}{4.5e^{-st}dt} \right]</math> |
||
<math>\int_{}^{}{4te^{-st}}=\; |
<math>\int_{-.5}^{.5}{4te^{-st}}=\; \frac{4e^{.5s}-2se^{.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math> |
||
<math>\int_{}^{}{-4te^{-st}}=\ |
<math>\int_{.5}^{1.5}{-4te^{-st}}=\frac{6se^{-1.5s}+4e^{-1.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math> |
||
<math>\int_{}^{}{4.5e^{-st}}=\ |
<math>\int_{.5}^{1.5}{4.5e^{-st}}=\frac{4.5se^{-.5s}-4.5se^{-1.5s}}{s^{2}}</math> |
||
<math>F\left( s \right)=\frac{1}{1-e^{-2s}}\left( \frac{-8e^{-.5s}+4e^{.5s}+4e^{-1.5s}}{s^{2}}+\frac{.5e^{-.5s}-2e^{.5s}-1.5e^{-1.5s}}{s} \right)</math> |
|||
==Author== |
==Author== |
||
Latest revision as of 13:00, 25 January 2010
This page is still in progress
Introduction
This article explains how to transform a periodic function (in this case a triangle wave). This is especially useful for analyzing circuits which contain triangle wave voltage sources.
Define F(t)
So,
Using the theorem for the transform of a periodic function,