Fourier Example: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
New page: Find the Fourier Series of the function: <br /> <center><math>\f(x)=begin{cases} 0,-pi<x<0 \end{cases} \ \ \ \ n=0,1,2,3\dots</math></center> <br /> :<math>\rho_X(x) = \begin{cases}...
 
Cdxskier (talk | contribs)
No edit summary
 
(9 intermediate revisions by one other user not shown)
Line 1: Line 1:
Find the Fourier Series of the function:
Find the Fourier Series of the function:


<br />


<center><math>\f(x)=begin{cases}  
:<math>f(x) = \begin{cases}0,& -\pi\le x<0\\
\pi,& 0 \le x \le \pi\\
\end{cases}</math>


0,-pi<x<0


\end{cases} \ \ \ \ n=0,1,2,3\dots</math></center>


<br />


:<math>\rho_X(x) = \begin{cases}\frac{1}{2},& \x=0,\\
== Solution ==
\frac{1}{2},& \x=1,\\
 
0,& \text{otherwise} .\end{cases}</math>
 
<!--  -->
 
Here we have
 
 
 
 
<math>a_o=\frac{1}{2\pi}(\int_{-\pi}^00\ dx+\int_{0}^\pi\pi\ dx)=\frac{\pi}{2}</math>
 
 
 
<math>a_n=\int_{0}^\pi\pi cos(nx)\ dx=0,   n\ge1,</math>
 
 
and
 
 
:<math>b_n = \int_{0}^\pi  \pi\sin(nx)\, dx = \frac{1}{n}(1-cos(x\pi))=\frac{1}{n}(1-(-1)^n)</math>
 
 
We obtain  <math>b_{2n}</math> = 0 and
 
 
<math>b_{2n+1}=\frac{2}{2n+1}</math>
 
 
Therefore, the Fourier series of f(x) is
 
<math>f(x)=\frac{\pi}{2}+2(sin(x)+\frac{sin(3x)}{3}+\frac{sin(5x)}{5}+...)</math>
 
 
==Solution Graph==
[[Image:Fourier.gif]]
 
 
==***BONUS*** VIDEO! (For people completely lost on Fourier Series)==
 
 
http://www.youtube.com/watch?v=nXEqrOt-nB8
 
 
==References:==
[[Fourier Series: Basic Results]]
==Readers==
[[Lau, Chris|Christopher Garrison Lau I]]

Latest revision as of 15:26, 25 January 2010

Find the Fourier Series of the function:


f(x)={0,πx<0π,0xπ



Solution

Here we have



ao=12π(π00dx+0ππdx)=π2


an=0ππcos(nx)dx=0,n1,


and


bn=0ππsin(nx)dx=1n(1cos(xπ))=1n(1(1)n)


We obtain b2n = 0 and


b2n+1=22n+1


Therefore, the Fourier series of f(x) is

f(x)=π2+2(sin(x)+sin(3x)3+sin(5x)5+...)


Solution Graph


***BONUS*** VIDEO! (For people completely lost on Fourier Series)

http://www.youtube.com/watch?v=nXEqrOt-nB8


References:

Fourier Series: Basic Results

Readers

Christopher Garrison Lau I