Example: Step Down Transformer: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:


From the given data of the step down transformer we can see that
From the given data of the step down transformer we can see that
<math>\text a=2~and~s=48000~\angle cos^{-1}     \</math>
<math>~~~a=2~and~s=48000~\angle \cos^{-1}(0.7)</math>
 
<math>I_2~=~\frac{s^*}{v_2^*}~=~200\angle -46^\circ </math>
 
<math> R_H~+~a^2~R_l~=~1.6</math>
<math>j~(X_H~+A^2~X_L)~=~J~4~=~\frac{1}{a}~\vec I_2~\left((R_H~+~a^2~R_L)~+~j(X_H~+~a^2X_L))+a\vecV_2\right)</math>
<math>\vec V_1~=~893\angle 10.7\circ /text{instead of} 480 V </math>
<math>P_core~=~ P_c~=~250 w = \frac{v_1^2/R_{cH}=\frac{893^2}{3200}</math>
<math>P_{cu}=16000 w </math>
<math> n~=~\frac{Re(s)}{Re(s)~+~P_{cu}~+~P_c}</math>

Revision as of 02:38, 29 January 2010

Problem Statement

Given a 48 kVA, 480/240 V/V step down transformer operating at rated load with a power factor of 0.7 (lag), determine the efficiency and voltage regulation.

Given: RL=0.2Ω,XL=0.6Ω,RH=0.8Ω,XH=1.6Ω,RcH=3.2kΩ,XmH=1.2kΩ

  • this problem is from EMEC EXAM 1, Winter 08 by legendary Dr. Cross

Solution

From the given data of the step down transformer we can see that a=2ands=48000cos1(0.7)

I2=s*v2*=20046

RH+a2Rl=1.6 Failed to parse (unknown function "\vecV"): {\displaystyle j~(X_H~+A^2~X_L)~=~J~4~=~\frac{1}{a}~\vec I_2~\left((R_H~+~a^2~R_L)~+~j(X_H~+~a^2X_L))+a\vecV_2\right)} V1=89310.7/textinsteadof480V Failed to parse (syntax error): {\displaystyle P_core~=~ P_c~=~250 w = \frac{v_1^2/R_{cH}=\frac{893^2}{3200}} Pcu=16000w n=Re(s)Re(s)+Pcu+Pc