Chapter 1: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(71 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
⚫ | |||
'''Chapter 1''' |
|||
⚫ | |||
⚫ | |||
*Trans stands for transfer (from voltage to current or visa versa). |
|||
⚫ | |||
*The inputs and outputs can be either current or voltage. This leads to 4 amplifier models. |
|||
⚫ | |||
:*The inputs and outputs can be either current or voltage. This leads to 4 amplifier models. |
|||
⚫ | |||
{| class="wikitable" border="1" |
|||
! |
|||
|+ Amplifier models |
|||
! Amplifier type <br> Gain parameter<br> Gain equation |
|||
! Voltage input |
! Voltage input |
||
! Current input |
! Current input |
||
|- align="center" |
|- align="center" |
||
! Voltage output |
! Voltage output |
||
| Voltage <br> Open-circuit voltage gain <br> <math>A_{voc}=\frac{v_{ooc}}{v_i}</math> |
|||
⚫ | |||
| Transresistance <br> |
| Transresistance <br> Open-circuit transresistance gain <br> <math>R_{moc}=\frac{v_{ooc}}{i_i}</math> |
||
|- align="center" |
|- align="center" |
||
! Current output |
! Current output |
||
| Transconductance <br> |
| Transconductance <br> Short-circuit transconductance gain <br> <math>G_{msc}=\frac{i_{osc}}{v_i}</math> |
||
| Current <br> Short-circuit current gain <br> <math>A_{isc}=\frac{i_{osc}}{i_i}</math> |
|||
⚫ | |||
|} |
|} |
||
#Voltage |
|||
##To find the voltage-amplifier model for an amplifier, we must determine the open-circuit voltage gain, the input impedance, and the output impedance |
|||
#Current |
|||
##"As before, the input resistance accounts for the current that the amplifier draws from the signal source. The output resistance is now in parallel with the controlled source and accounts for the fact that the amplifier cannot supply a fixed current to an arbitrarily high load resistance." |
|||
##To find the current amplifier model, we must determine the short-circuit current gain, the input impedance, and the output impedance |
|||
#Transconuductance |
|||
⚫ | |||
{| class="wikitable" border="1" |
|||
*Definitions - ripped straight from the book |
|||
|+ Characteristics of ideal amplifiers |
|||
⚫ | |||
! Amplifier <br> Type !! Input <br> Impedance !! Output <br> Impedance !! Gain <br> Parameter |
|||
⚫ | |||
|-align="center" |
|||
⚫ | |||
⚫ | |||
⚫ | |||
| <math>\infty</math> |
|||
| 0 |
|||
| <math>A_{voc}\,</math> |
|||
|-align="center" |
|||
⚫ | |||
| 0 |
|||
| <math>\infty</math> |
|||
| <math>A_{isc}\,</math> |
|||
|-align="center" |
|||
! Transconductance |
|||
| <math>\infty</math> |
|||
| <math>\infty</math> |
|||
| <math>G_{msc}\,</math> |
|||
|-align="center" |
|||
⚫ | |||
| 0 |
|||
| 0 |
|||
| <math>R_{moc}\,</math> |
|||
|} |
|||
==Differential Amplifiers== |
|||
[[Image:Differential Amplifier.PNG|thumb|300px| Differential Amplifier inputs]] |
|||
*Differential amplifiers take two (or more) input sources and produce an output voltage proportional to the difference between the input voltages. |
|||
*Instead of expressing the input voltages in terms of <math>v_{1}\,</math> and <math>v_{i}\,</math>, we can express them in terms of the differential and common-mode input. |
|||
**Differential input signal is the difference between the input voltages. <math>v_{d}=v_{1}-v_{2}\,</math> |
|||
**Common-mode input signal is the average of the input voltages. <math>v_{cm}=\frac{1}{2}(v_{1}+v_{2})</math> |
|||
**<math>v_{1}=v_{cm}+\frac{v_{d}}{2}</math>, if <math>v_{1}\,</math> is voltage at the positive terminal. |
|||
**<math>v_{2}=v_{cm}-\frac{v_{d}}{2}</math>, if <math>v_{2}\,</math> is voltage at the negative terminal. |
|||
*<math>v_o=A_d v_{d} + A_{cm} v_{cm}\,</math>, where <math>A_d\,</math> is the differential gain and <math>A_{cm}\,</math> is the common mode gain. |
|||
*The common-mode rejection ratio (CMRR) is the ratio of the magnitude of the differential gain to the magnitude of the common-mode gain. |
|||
**In decibels, <math> CMRR = 20 \log \frac{| A_d |}{| A_{cm}|}</math> |
|||
==Definitions== |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
==Capacitor== |
|||
:<math>v(t)= \frac{q(t)}{C} = \frac{1}{C}\int_{t_0}^t i(\tau) \mathrm{d}\tau+v(t_0)</math> |
|||
:<math>i(t)= \frac{\mathrm{d}q(t)}{\mathrm{d}t}=C\frac{\mathrm{d}v(t)}{\mathrm{d}t}</math> |
|||
==Inductor== |
|||
:<math>v(t) = L \frac{di(t)}{dt}</math> |
|||
:<math>i(t) = \frac{1}{L} \int^t_{t_0} v(\tau)d\tau + i({t_0})</math> |
|||
==Reviewers== |
|||
*[[Lau, Chris | Christopher Garrison Lau I]] |
|||
*[[Vier, Michael | Michael Vier]] |
|||
==Readers== |
|||
*[[Lau, Chris | Christopher Garrison Lau I]] |
|||
*Bag of Tricks |
|||
**Buffer amplifier |
|||
**Inverting amplifier |
Latest revision as of 13:50, 11 March 2010
Amplifier Models
- These are purely models, and cannot be replicated in a real world environment. They are meant to explain.
- Trans stands for transfer (from voltage to current or visa versa).
- The inputs and outputs can be either current or voltage. This leads to 4 amplifier models.
- You can use any of these models, though some may be easier to work with (if you are given the Thevenin or Norton equivalent).
Amplifier type Gain parameter Gain equation |
Voltage input | Current input |
---|---|---|
Voltage output | Voltage Open-circuit voltage gain |
Transresistance Open-circuit transresistance gain |
Current output | Transconductance Short-circuit transconductance gain |
Current Short-circuit current gain |
Amplifier Type |
Input Impedance |
Output Impedance |
Gain Parameter |
---|---|---|---|
Voltage | 0 | ||
Current | 0 | ||
Transconductance | |||
Transresistance | 0 | 0 |
Differential Amplifiers
- Differential amplifiers take two (or more) input sources and produce an output voltage proportional to the difference between the input voltages.
- Instead of expressing the input voltages in terms of and , we can express them in terms of the differential and common-mode input.
- Differential input signal is the difference between the input voltages.
- Common-mode input signal is the average of the input voltages.
- , if is voltage at the positive terminal.
- , if is voltage at the negative terminal.
- , where is the differential gain and is the common mode gain.
- The common-mode rejection ratio (CMRR) is the ratio of the magnitude of the differential gain to the magnitude of the common-mode gain.
- In decibels,
Definitions
- Input Resistance: of an amplifier is the equivalent resistance seen when looking into the input terminals.
- Output Resistance: is the Thevenin resistance seen when looking back into the output terminals of an amplifier.
- Open-circuit voltage gain: the ratio of output amplitude to input amplitude with the output terminals open circuited.
- Short-circuit current gain: the current gain with the output terminals of the amplifier short circuited.