Kurt's Assignment: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
=Common Synthesizer Waveforms=
=Common Synthesizer Waveforms=

<math>\begin{align}
<math>\begin{align}
x(t) &= x(t+T) = a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0t) + b_n \sin(n\omega_0t)\\
x(t) &= x(t+T) = a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0t) + b_n \sin(n\omega_0t)\\
Line 9: Line 10:


==Square Wave==
==Square Wave==




<math>\begin{align}
<math>\begin{align}
Line 18: Line 17:
&=\frac{H}{2} - \left[H-\frac{1}{2}H\right]\\
&=\frac{H}{2} - \left[H-\frac{1}{2}H\right]\\
&=\frac{H}{2}-\frac{H}{2}\\
&=\frac{H}{2}-\frac{H}{2}\\
&=0
\end{align}</math>


<math>\begin{align}
a_n &= \frac{2}{T}\int_0^{\frac{1}{2}T} H\cos(n\omega_0t) dt + \frac{2}{T}\int_{\frac{1}{2}T}^T -H\cos(n\omega_0t) dt\\
&=\frac{2}{T}\left[\frac{H}{n\omega_0}\sin(n\omega_0t)\right]_0^{\frac{1}{2}T} + \frac{2}{T}\left[\frac{-H}{n\omega_0}\sin(n\omega_0t)\right]_{\frac{1}{2}T}^T\\
&=\frac{2}{T}\left[\frac{H}{n\frac{2\pi}{T}}\sin(n\pi)\right]
&=0
&=0
\end{align}</math>
\end{align}</math>

Revision as of 13:44, 1 November 2010

Common Synthesizer Waveforms

Square Wave


TODO: finish