Kurt's Assignment: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
=Common Synthesizer Waveforms= |
=Common Synthesizer Waveforms= |
||
Many synthesizers employ a variety of waveforms to produce varied sounds. The most common waveform is the sine wave. However, in additive synthesis, multiple waveforms can be added together to create a different waveform with different characteristics. The basis for this form of synthesis is the Fourier series: |
|||
<math>\begin{align} |
<math>\begin{align} |
||
Line 9: | Line 10: | ||
</math> |
</math> |
||
The four basic waveforms are Sine Waves, Square Waves, Triangle Waves, and Sawtooth Waves. |
|||
==Square Wave== |
==Square Wave== |
||
By inspection of the waveform, the DC component of the wave will be 0. Also, since the waveform is odd, a<sub>n</sub> will be 0. Here is the proof: |
|||
<math>\begin{align} |
<math>\begin{align} |
||
Line 24: | Line 28: | ||
a_n &= \frac{2}{T}\int_0^{\frac{1}{2}T} H\cos(n\omega_0t) dt + \frac{2}{T}\int_{\frac{1}{2}T}^T -H\cos(n\omega_0t) dt\\ |
a_n &= \frac{2}{T}\int_0^{\frac{1}{2}T} H\cos(n\omega_0t) dt + \frac{2}{T}\int_{\frac{1}{2}T}^T -H\cos(n\omega_0t) dt\\ |
||
&=\frac{2}{T}\left[\frac{H}{n\omega_0}\sin(n\omega_0t)\right]_0^{\frac{1}{2}T} + \frac{2}{T}\left[\frac{-H}{n\omega_0}\sin(n\omega_0t)\right]_{\frac{1}{2}T}^T\\ |
&=\frac{2}{T}\left[\frac{H}{n\omega_0}\sin(n\omega_0t)\right]_0^{\frac{1}{2}T} + \frac{2}{T}\left[\frac{-H}{n\omega_0}\sin(n\omega_0t)\right]_{\frac{1}{2}T}^T\\ |
||
&=\frac{2}{T}\left[\frac{H}{n\frac{2\pi}{T}}\sin(n\pi)\right] |
&=\frac{2}{T}\left[\frac{H}{n\frac{2\pi}{T}}\sin(n\frac{2\pi}{T}\frac{1}{2}T)-0\right] + \frac{2}{T}\left[-0+\frac{H}{n\frac{2\pi}{T}}\sin(n\frac{2pi}{T}\frac{1}{2}T)\right]\\ |
||
&=\frac{2}{T}\left[\frac{TH}{2\pi n}\underbrace{\sin(n\pi)}_\text{0}\right] + \frac{2}{T}\left[\frac{TH}{2\pi n}\underbrace{\sin(n\pi)}_\text{0}\right]\\ |
|||
&=0 |
&=0 |
||
\end{align}</math> |
\end{align}</math> |
||
TODO: finish |
|||
This just leaves the sin component of the waveform found below. |
|||
<math>\begin{align} |
|||
b_n &= \frac{2}{T}\int_0^{\frac{1}{2}T} H\sin(n\omega_0t) dt + \frac{2}{T}\int_{\frac{1}{2}T}^T -H\sin(n\omega_0t) dt\\ |
|||
&=\frac{2}{T}\left[\frac{-H}{n\omega_0}\cos(n\omega_0t)\right]_0^{\frac{1}{2}T} + \frac{2}{T}\left[\frac{H}{n\omega_0}\cos(n\omega_0t)\right]_{\frac{1}{2}T}^T\\ |
|||
&=\frac{2}{T}\left[-\frac{H}{n\frac{2\pi}{T}}\cos(n\frac{2\pi}{T}\frac{1}{2}T)+\frac{H}{n\frac{2\pi}{T}}\right] + \frac{2}{T}\left[\frac{H}{n\frac{2\pi}{T}}\cos(n\frac{2\pi}{T}T)-\frac{H}{n\frac{2\pi}{T}}\cos(n\frac{2\pi}{T}\frac{1}{2}T)\right]\\ |
|||
&=\frac{2}{T}\left[-\frac{TH}{2\pi n}\cos(n\pi)+\frac{TH}{2\pi n}\right] + \frac{2}{T}\left[\frac{TH}{2\pi n}\underbrace{\cos(2 \pi n)}_\text{1}-\frac{TH}{2\pi n}\cos(n\pi)\right]\\ |
|||
&=-\frac{H}{\pi n}\cos(n\pi)+\frac{H}{\pi n} + \frac{H}{\pi n}-\frac{H}{\pi n}\cos(n\pi)\\ |
|||
&=\frac{2H}{\pi n}-\frac{2H}{\pi n}\cos(n\pi)\\ |
|||
\end{align}</math> |
|||
Finally, resulting in the Fourier series for a Square Wave. |
|||
<math>\text{Square Wave Fourier Series: }x(t) = x(t+T) = \sum_{n=1}^\infty \left(\frac{2H}{\pi n}-\frac{2H}{\pi n}\cos(n\pi)\right) \sin(n\omega_0t) </math> |
|||
==Triangle Wave== |
|||
==Sawtooth Wave== |
Revision as of 14:29, 1 November 2010
Common Synthesizer Waveforms
Many synthesizers employ a variety of waveforms to produce varied sounds. The most common waveform is the sine wave. However, in additive synthesis, multiple waveforms can be added together to create a different waveform with different characteristics. The basis for this form of synthesis is the Fourier series:
The four basic waveforms are Sine Waves, Square Waves, Triangle Waves, and Sawtooth Waves.
Square Wave
By inspection of the waveform, the DC component of the wave will be 0. Also, since the waveform is odd, an will be 0. Here is the proof:
This just leaves the sin component of the waveform found below.
Finally, resulting in the Fourier series for a Square Wave.