Homework: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Homework #9== |
==Homework #9== |
||
Problem Statement: |
<b>Problem Statement:</b> |
||
<br> |
<br> |
||
Show that, for a bandwidth limited signal (<math> x(t) </math> with <math> f_{max} < {1\over {2T}} </math>) |
Show that, for a bandwidth limited signal (<math> x(t) </math> with <math> f_{max} < {1\over {2T}} </math>) |
||
<br> |
|||
<math> |
|||
⚫ | |||
=c\int_{-\infty}^{\infty} \left | x(t) \right | ^2\,dt |
|||
</math> |
|||
<br> |
|||
And find c. |
|||
<br> |
|||
<br> |
|||
<b> Equations: </b> |
|||
<br> |
|||
<math> |
|||
\left \langle \phi_k(t) \vert \phi_l(t) \right \rangle=\int_{-\infty}^{\infty} \phi_k(t)^{*} \phi_l(t)\,dt |
|||
</math> |
|||
<br> |
|||
<math> |
|||
x(t)=\sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) |
|||
</math> |
|||
<br> |
|||
<b>Solution:</b> |
|||
<br> |
|||
<math> |
|||
\begin{matrix} |
|||
\left \langle x(t) \vert x(t) \right \rangle & = & \int_{-\infty}^{\infty} x(t)^{*} x(t)\,dt |
|||
\\ \ & = & \int_{-\infty}^{\infty} \left | x(t) \right |^2\,dt |
|||
\end{matrix} |
|||
</math> |
|||
<br> |
|||
<math> |
|||
x(t)=\sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) |
|||
</math> |
|||
<br> |
|||
<math> |
|||
\begin{matrix} |
|||
\Rightarrow \left \langle x(t) \vert x(t) \right \rangle & = & |
|||
\left \langle \sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) \vert \sum_{l=-\infty}^{\infty} x(lT)\phi_l(t) \right \rangle |
|||
\\ \ & = & \sum_{k=-\infty}^{\infty}\sum_{l=-\infty}^{\infty} x(kT)x(lT) |
|||
\left \langle \phi_k(t) \vert \phi_l(t) \right \rangle |
|||
\end{matrix} |
|||
</math> |
|||
<br> |
|||
By earlier work: |
|||
<math> |
|||
\left \langle \phi_k(t) \vert \phi_l(t) \right \rangle |
|||
=T\delta_{l,k} |
|||
</math> |
|||
<br> |
|||
<math> |
|||
\Rightarrow |
|||
\sum_{k=-\infty}^{\infty}\sum_{l=-\infty}^{\infty} x(kT)x(lT) |
|||
\left \langle \phi_k(t) \vert \phi_l(t) \right \rangle |
|||
=T\sum_{k=-\infty}^{\infty} \left | x(kT) \right |^2 |
|||
</math> |
|||
<br> |
|||
<math> |
|||
\Rightarrow |
|||
\sum_{k=-\infty}^{\infty} \left | x(kT) \right | ^2 |
|||
={1\over T}\int_{-\infty}^{\infty} \left | x(t) \right | ^2\,dt |
|||
</math> |
|||
<br> |
|||
<math> |
<math> |
||
\Rightarrow |
|||
⚫ | |||
c={1\over T} |
|||
</math> |
</math> |
||
==Homework #13== |
|||
Total time spent working on Wiki: 3 hrs |
Latest revision as of 10:02, 10 December 2004
Homework #9
Problem Statement:
Show that, for a bandwidth limited signal ( with )
And find c.
Equations:
Solution:
By earlier work:
Homework #13
Total time spent working on Wiki: 3 hrs