|   |   | 
| (2 intermediate revisions by one other user not shown) | 
| Line 1: | Line 1: | 
|  | ==Fourier series==
 |  | 
|  | The Fourier series is used to analyze arbitrary periodic functions by showing them as a composite of sines and cosines.
 |  | 
|  | 
 |  | 
 | 
|  | A function is considered periodic if <math> x(t) = x(t+T)\, </math> for <math> T \neq 0 </math>.
 |  | 
|  | 
 |  | 
|  | The exponential form of the Fourier series is defined as <math> x(t) = \sum_{n=-\infty}^\infty \alpha_n e^{{j2\pi nt}/T} \, </math>
 |  | 
|  | 
 |  | 
|  | ==Determining the coefficient <math> \alpha_n \,</math> ==
 |  | 
|  | 
 |  | 
|  | <math> x(t) = \sum_{n=-\infty}^\infty \alpha_n e^{{j2\pi nt}/T} \, </math> 
 |  | 
|  | 
 |  | 
|  | *The definition of the Fourier series
 |  | 
|  | 
 |  | 
|  | <math> \int_{-T/2}^{T/2} x(t)\, dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi nt}/T} dt</math> 
 |  | 
|  | 
 |  | 
|  | *Integrating both sides for one period. The range of integration is arbitrary, but using <math> \int_{-T/2}^{T/2} </math> scales nicely when extending the Fourier series to a non-periodic function
 |  | 
|  | 
 |  | 
|  | <math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi nt}/T}e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi (n-m)t}/T} dt</math> 
 |  | 
|  | 
 |  | 
|  | *Multiply by the complex conjugate
 |  | 
|  | 
 |  | 
|  | <math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \frac{Te^{{j2\pi (n-m)t}/T}}{{j2\pi (n-m)}} \bigg|_{-T/2}^{T/2} = \sum_{n=-\infty}^\infty \alpha_n T\delta_{n,m} = T\alpha_m</math> 
 |  | 
|  | 
 |  | 
|  | *<math> \frac{Te^{{j2\pi (n-m)t}/T}}{{j2\pi (n-m)}} \bigg|_{-T/2}^{T/2} = T\frac{e^{j\pi(n-m)}-e^{-j\pi(n-m)}}{j2\pi(n-m)} = T \frac{\sin\pi(n-m)}{\pi(n-m)} =  \begin{Bmatrix} T, n=m \\ 0, n\ne m \end{Bmatrix} = T\delta_{n,m}</math> 
 |  | 
|  | 
 |  | 
|  | ** Using L'Hopitals to evaluate the <math>\frac{T\cdot 0}{0}</math> case. Note that n & m are integers
 |  | 
|  | 
 |  | 
|  | <math> \alpha_m = \frac{1}{T}\int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt </math>
 |  | 
|  | 
 |  | 
|  | 
 |  | 
|  | 
 |  | 
|  | ==Linear Time Invariant Systems==
 |  | 
|  | 
 |  | 
|  | Must meet the following criteria
 |  | 
|  | 
 |  | 
|  | *Time independance
 |  | 
|  | *Linearity
 |  | 
|  | **Superposition (additivity)
 |  | 
|  | **Scaling (homogeneity)
 |  | 
|  | 
 |  | 
|  | ==The Dot Product, Complex Conjugates, and Orthogonality==
 |  | 
|  | [[Image:300px-Scalarproduct.gif |thumb|300px|right]]
 |  | 
|  | 
 |  | 
|  | Geometrically, the dot product is a scalar projection of a onto b 
 |  | 
|  | 
 |  | 
|  | *<math> \vec a \cdot \vec b = \left | a \right \vert \left | b \right \vert \cos \theta</math>
 |  | 
|  | 
 |  | 
|  | Arthimetically, multiply like terms and add
 |  | 
|  | 
 |  | 
|  | *<math> (3,2,1)\cdot(5,6,7)=3\cdot5^*+2\cdot6^*+1\cdot7^*</math>
 |  | 
|  | 
 |  | 
|  | Lets imagine that we are only have one dimension
 |  | 
|  | 
 |  | 
|  | *<math> (a+jb)\hat i \cdot (a+jb)\hat i \ne a^2+b^2 </math>
 |  | 
|  | 
 |  | 
|  | In order to get the real parts and imaginary parts to multiply as like terms, we need to take the complex conjugate of one of the terms
 |  | 
|  | 
 |  | 
|  | *<math> (a+jb)\hat i \cdot (a-jb)\hat i = a^2+b^2 </math>
 |  | 
|  | 
 |  | 
|  | To test for orthogonality, take the complex conjugate of one of the vectors and multiply.
 |  | 
|  | 
 |  | 
|  | *<math> \int_{-\infty}^{\infty} \phi_n (t) \phi_m^* (t) dt = 0</math>
 |  | 
|  | 
 |  | 
|  | ==Changing Basis Functions==
 |  | 
|  | 
 |  | 
|  | We'd like to change from <math> \sum_{n=-\infty}^{\infty} \alpha_n e^{j2\pi nt/T} </math> to <math> \sum_{m=0}^{\infty} c_n \cos \left (\frac{2\pi mt}{T}+\Theta_m \right) </math>
 |  | 
|  | 
 |  | 
|  | <math> x(t) = \sum_{n=-\infty}^{\infty} \alpha_n e^{j2\pi nt/T} = \underbrace{ \sum_{n=-\infty}^{-1} \alpha_n e^{j2\pi nt/T} }_{n'=-n} + \; \alpha_0 \; + \sum_{n=1}^{\infty} \alpha_n e^{j2\pi nt/T} = \underbrace{\sum_{n'=1}^{\infty} \alpha_n e^{j2\pi nt/T}}_{m=n'} + \; \alpha_0 \; + \underbrace{\sum_{n=1}^{\infty} \alpha_n e^{j2\pi nt/T}}_{m=n}</math>
 |  | 
|  | 
 |  | 
|  | <math> = \alpha_0 + \sum_{m=1}^{\infty} \left (\alpha_m e^{j2\pi mt/T} + \alpha_{-m} e^{-j2\pi mt/T}\right) </math>
 |  | 
|  | 
 |  | 
|  | If we assume <math> x(t) \in \Re \ \forall \ m</math>, then to make the imaginary parts cancel out
 |  | 
|  | 
 |  | 
|  | *<math> \alpha_{-m} = \alpha_m^* </math>
 |  | 
|  | *<math> u + u^* = 2 \Re [u] </math>
 |  | 
|  | *<math> \alpha_{m} = | \alpha_m |e^{j\theta m} \,</math>
 |  | 
|  | 
 |  | 
|  | <math> = \alpha_0 + \sum_{m=1}^{\infty} 2 \Re \left[\alpha_m e^{j2\pi mt/T}\right] = \alpha_0 + \sum_{m=1}^{\infty} 2 \Re \left[|\alpha_m| e^{j\theta m}e^{j2\pi mt/T}\right] = \alpha_0 + \sum_{m=1}^{\infty} |\alpha_m|2 \Re \left[e^{j\theta m}e^{j2\pi mt/T}\right]</math>
 |  | 
|  | 
 |  | 
|  | ==Identities==
 |  | 
|  | <math>e^{j \theta} = \cos \theta + j \sin  \theta \, </math> Euler's identity linking rectangular and polar coordinates
 |  | 
|  | 
 |  | 
|  | <math>\sin x = \frac{e^{jx}-e^{-jx}}{2j} \,</math>
 |  | 
|  | 
 |  | 
|  | <math>\cos x = \frac{e^{jx}+e^{-jx}}{2} \,</math>
 |  | 
|  | 
 |  | 
|  | <math> \left \langle \ Bra \mid Ket \ \right \rangle = Ket \cdot Bra </math>
 |  | 
|  | 
 |  | 
|  | <math> \alpha_{-m} = \alpha^* \,</math>
 |  | 
|  | 
 |  | 
|  | The dirac delta has an infinite height and an area of 1
 |  |