The Fourier Transforms: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
 
(27 intermediate revisions by 3 users not shown)
Line 2: Line 2:




== Properties of a Fourier Transform: ==
== Headline text ==
Properties of a Fourier Transform:
Properties of a Fourier Transform:


==== Linearity ====
;Convolution

::::{|
|<math>f(t)* g(t) \,</math>
<math>\mathcal{F}[a*x(t) + b*y(t)] = a*X(f) + b*Y(f)</math>

|&nbsp; &nbsp; <math>\stackrel{\mathcal{F}}{\Longleftrightarrow}\quad

\sqrt{2\pi}\cdot F(\omega)\cdot G(\omega) \,</math>
==== Shifting the function changes the phase of the spectrum ====
| &nbsp; &nbsp; (unitary convention)

|-
<math>\mathcal{F}[x(t-a)] = X(t)e^{j2\pi f a}</math>
|

|&nbsp; &nbsp; <math>\stackrel{\mathcal{F}}{\Longleftrightarrow}\quad
==== Frequency and amplitude are affected when changing spatial scale inversely ====
F(\omega)\cdot G(\omega) \,</math>
| &nbsp; &nbsp; (non-unitary convention)
<math>\mathcal{F}[x(a*t)] = \frac{1}{a}X(\frac{f}{a})</math>
|-

|
=== Symmetries ====
|&nbsp; &nbsp; <math>\stackrel{\mathcal{F}}{\Longleftrightarrow}\quad
'''
F(f)\cdot G(f) \,</math>
- if x(t) is real, then <math> X(-f) = F(t)^*</math>
| &nbsp; &nbsp; (ordinary frequency)

|}
- if x(t) is imaginary, then <math>X(-f) = -X(f)^*</math>

- if x(t) is even, then <math>X(-f) = X(f)$</math>

- if x(t) is odd, then <math> X(-f) = -X(f)$.</math>'''

Latest revision as of 12:44, 28 October 2007

The Fourier transform was named after Joseph Fourier, a French mathematician. A Fourier Transform takes a function to its frequency components.


Properties of a Fourier Transform:

Properties of a Fourier Transform:

Linearity

   


Shifting the function changes the phase of the spectrum

   

Frequency and amplitude are affected when changing spatial scale inversely

   

Symmetries =

   - if x(t) is real, then 
   - if x(t) is imaginary, then 
   - if x(t) is even, then 
   - if x(t) is odd, then