10/09 - Fourier Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
 
(17 intermediate revisions by the same user not shown)
Line 3: Line 3:
|<math>\left \langle e^{j2\pi n t/T} \mid e^{j2\pi m t/T} \right \rangle</math>
|<math>\left \langle e^{j2\pi n t/T} \mid e^{j2\pi m t/T} \right \rangle</math>
|<math>=\int_{-\infty}^{\infty}e^{j2\pi n t/T} e^{-j2\pi m t/T}\,dt</math>
|<math>=\int_{-\infty}^{\infty}e^{j2\pi n t/T} e^{-j2\pi m t/T}\,dt</math>
|
|-
|-
|
|
|<math>=\int_{-\infty}^{\infty}e^{j2\pi (n-m) t/T}\,dt</math>
|<math>=\int_{-\infty}^{\infty}e^{j2\pi (n-m) t/T}\,dt</math>
|
|-
|
|<math>=\int_{-T/2}^{T/2}e^{j2\pi (n-m) t/T}\,dt</math>
|Assuming the function is perodic with the period T
|-
|
|<math>=T\delta_{m,n}\,\!</math>
|
|}
|}
*This is undefined due to the limits. The notes say that the integral = T, but no limits were defined. You would only know to do -T/2 to T/2 if you knew the function was periodic with period T.


==Fourier Transform==
==Fourier Transform==
Remember from [[10/02 - Fourier Series]]
*<math> \alpha_n = \frac{1}{T}\int_{-T/2}^{T/2} x(t) e^{-j\,2\,\pi \,n\,t/T}\, dt</math>
*<math>x(t) = x(t+T) = \sum_{n=-\infty}^\infty \alpha_n e^{j\,2\pi \,n/T}</math>

If we let <math> T \rightarrow \infty</math>
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>\frac{1}{T}</math>
|<math>\rightarrow df</math>
|-
|<math>\frac{n}{T}</math>
|<math>\rightarrow f</math>
|Remember <math>f=\frac{2\pi n}{T} \,\!</math>
|-
|<math>T\,\!</math>
|<math>\rightarrow \infty</math>
|-
|<math>\sum_{n=-\infty}^{\infty} \frac{1}{T}</math>
|<math>\rightarrow \int_{-\infty}^{\infty}() df</math>
|}

==Definitions==
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>F[x(t)]\,\!</math>
|<math>=X(f)\,\!</math>
|<math>=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}dt</math>
|<math>=\left \langle x(t) \mid e^{j2\pi ft}\right \rangle_t</math>
|-
|<math>F^{-1}[X(f)]\,\!</math>
|<math>=x(t)\,\!</math>
|<math>=\int_{-\infty}^{\infty} X(f) e^{j2\pi ft}df</math>
|<math>=\left \langle X(f) \mid e^{-j2\pi ft}\right \rangle_f</math>
|}

==Examples==
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>\int_{-\infty}^{\infty}e^{j2\pi ft}e^{-j2\pi f\lambda}df</math>
|<math>=\left\langle e^{j2\pi ft}\mid e^{j2\pi ft}\right\rangle_f</math>
|<math>=\delta(t-\lambda)\,\!</math>
|-
|<math>\int_{-\infty}^{\infty}e^{j2\pi tf}e^{-j2\pi tf_0}dt</math>
|<math>=\left\langle e^{j2\pi tf}\mid e^{j2\pi tf_0}\right\rangle_t</math>
|<math>=\delta(f-f_0)\,\!</math>
|}

{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>F^{-1}[F[x(t)]]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\left [ \int_{-\infty}^{\infty} x(\lambda) e^{-j2\pi f\lambda}d\lambda\right ]e^{j2\pi ft} df</math>
|<math>=\int_{-\infty}^{\infty}X(f) e^{j2\pi ft} df</math>
|<math>=x(t)\,\!</math>
|-
|
|
|<math>=\int_{-\infty}^{\infty}x(\lambda) \int_{-\infty}^{\infty}e^{j2\pi f(t-\lambda)} df d\lambda</math>
|<math>=\int_{-\infty}^{\infty}x(\lambda) \delta(t-\lambda) d\lambda</math>
|<math>=x(t)\,\!</math>
|-
|
|<math>=\int_{-\infty}^{\infty}\left [ \int_{-\infty}^{\infty} x(\lambda) e^{-j\omega\lambda}d\lambda\right ]e^{j\omega t} \frac{1}{2\pi}d\omega </math>
|<math>=\int_{-\infty}^{\infty}x(\lambda) \left [ \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j(t-\omega) \lambda}d\omega\right ] d\lambda</math>
|<math>=\int_{-\infty}^{\infty}x(\lambda) \delta(t-\omega) d\lambda</math>
|<math>=x(t)\,\!</math>
|}

===Sifting property of the delta function===
The dirac delta function is defined as any function, denoted as <math> \delta(t-u)\,\!</math>, that works for all variables that makes the following equation true:
<math>x(t)=\int_{-\infty}^{\infty} x(u)\delta(t-u) du</math>
*When dealing with <math>\omega\,\!</math>, it behaves slightly different than dealing with <math>f\,\!</math>. When dealing with <math>=\int_{-\infty}^{\infty}x(\lambda) \left [ \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j(t-\omega) \lambda}d\omega\right ] d\lambda</math>, note that the delta function is <math>\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j(t-\omega) \lambda}d\omega</math>. The <math>\frac{1}{2\pi}</math> is tacked onto the front. Thus, when dealing with <math>\omega\,\!</math>, you will often need to multiply it by <math>2\pi\,\!</math> to cancel out the <math>\frac{1}{2\pi}</math>.

===More properties of the delta function===
<math>\delta(a\,t) = \frac{1}{\left | a \right |}</math>

<math>\delta(\omega)=\delta(2\pi f)=\frac{1}{2\pi}\delta(f)</math>

{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>\int_{-\infty}^{\infty}\delta(a\,t)\,dt</math>
|<math>=\int_{-\infty}^{\infty}\delta(u\,t)\,\frac{du}{\left|a\right|}</math>
|Let <math>a\,t=u</math> and <math>du=a\,dt</math>
|-
|
|<math>=\frac{1}{\left|a\right|}</math>
|}

Latest revision as of 12:49, 4 December 2008

Assuming the function is perodic with the period T

Fourier Transform

Remember from 10/02 - Fourier Series

If we let

Remember

Definitions

Examples

Sifting property of the delta function

The dirac delta function is defined as any function, denoted as , that works for all variables that makes the following equation true:

  • When dealing with , it behaves slightly different than dealing with . When dealing with , note that the delta function is . The is tacked onto the front. Thus, when dealing with , you will often need to multiply it by to cancel out the .

More properties of the delta function

Let and