The development of the DFT: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
New page: <math>\sum_{m=1}^\infty\delta\left(t-nT\right)<\math> <math>\alpha\,\!</math>
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>\sum_{m=1}^\infty\delta\left(t-nT\right)<\math>
If we have a signal, such as following:
<math>\alpha\,\!</math>
 
[[Image:DFT1.jpg|400px]]
 
How do we put it into computer?
 
We can use A/D converter and a low pass filter to sample the signal that is wanted instead of from <math>t = -\infty\,\, to\,\, \infty</math>:
 
[[Image:DFT2.jpg|1000px]]
 
But then we have to make it periodic, so we convolve it with impulse function with NT apart to have impulse function in both time and frequency domain:
 
[[Image:DFT3.jpg|1000px]]
 
From the equations of final signal in both time and frequency domain, we can see that in the computer we have x(n) and in the frequency domain:
 
<math>\sum_{n=0}^{N-1}x(nT)\, e^{-j2\pi\,fnT}\,\cdot\,\frac{1} {NT}\sum_{m=-\infty}^\infty\delta\left(f-\frac{n}{NT}\right)=\sum_{m=-\infty}^\infty \frac{1} {NT}\sum_{n=0}^{N-1}x(nT)\, e^{-j2\pi\frac{m}{NT}nT} \delta\left(f-\frac{n}{NT}\right)</math>
 
Then the areas of the impulse functions is:
 
<math>\sum_{n=0}^{N-1}x(n)\, e^{-j2\pi\frac{nm}{N}}</math>
 
Which is the definition of the <math>DFT(x(n))</math>.
 
==Property of the DFT==
 
*DFT is periodic.
Proof:
 
<math>X(m+N)=\sum_{n=0}^{N-1}x(n)\, e^{-j2\pi\frac{n(m+N)}{N}}=\sum_{n=0}^{N-1}x(n)\, e^{-j2\pi\frac{nm}{N}}e^{-j2\pi\frac{nN}{N}}=\sum_{n=0}^{N-1}x(n)\, e^{-j2\pi\frac{nm}{N}}=X(m)</math>
 
==Inverse DFT==
 
Let's try to get back x(l) if we have X(m)
 
<math>X(m)=\sum_{n=0}^{N-1}x(n)\, e^{-j2\pi\frac{nm}{N}}</math>
 
Let's try do some trick to this DFT, let's sum it up and with exponents tag along.
 
<math>\sum_{m=0}^{N-1}X(m)\, e^{j2\pi\frac{lm}{N}} = \sum_{m=0}^{N-1}\sum_{n=0}^{N-1}x(n)\, e^{-j2\pi\frac{nm}{N}}e^{j2\pi\frac{lm}{N}}=\sum_{n=0}^{N-1}x(n)\sum_{m=0}^{N-1}e^{j2\pi\frac{(l-n)m}{N}}</math>
 
Note: <math>\sum_{m=0}^{N-1}e^{j2\pi\frac{(l-n)m}{N}}</math> will be N if <math>l=n</math>.
 
Let <math>e^{j2\pi\frac{(l-n)m}{N}}=r^m</math> then <math>r=e^{j2\pi\frac{(l-n)}{N}}</math>
 
So we know the sum of <math> r^m=S=1+r+r^2+r^3+...+r^{N-1}</math>
 
Therefore, we can divide r at both side of equation and get <math>\frac{S-1}{r}=S-r^{N-1}, S(\frac{1}{r}-1)=\frac{1}{r}-r^{N-1}, S=\frac{1-r^N}{1-r}</math>
 
Think about this, if <math>l\ne\, n, r=e^{j2\pi\frac{(l-n)}{N}}, S =\frac{1-e^{j2\pi(l-n)}}{1-e^{j2\pi\frac{(l-n)}{N}}}=0</math>, since <math>e^{j2\pi(l-n)}=1</math> for any integer of l and n.
 
So <math>\sum_{m=0}^{N-1}X(m)\, e^{j2\pi\frac{lm}{N}}=\sum_{n=0}^{N-1}x(n)N\delta_{n,l}=Nx(l)</math>
 
<math>x(l) = \frac{1}{N}\sum_{m=0}^{N-1}X(m)\, e^{j2\pi\frac{lm}{N}}\equiv\, IDFT(X(m)) </math>
 
Key points to note:
 
* By doing the DFT, we make the signal periodic in both time domain and frequency domain.
 
<math> X(m+N)=X(m),\,\,  x(n+N)=x(n) </math>
 
* <math> X(m) \,\,for\,\,\, m>\frac{N}{2}</math> corresponds to <math> X(m-N)</math>
 
==Approximation of Fourier integral==
 
We can kind of see the DFT as an approximation to the Fourier integral.
 
<math>X(m)=\sum_{n=0}^{N-1}x(n)\, e^{-j2\pi\frac{nm}{N}}=\frac{1}{T}\sum_{n=-\frac{N}{2}}^{N-1-\frac{N}{2}}x(n)\, e^{-j2\pi\, nT\frac{m}{NT}}T\cong\frac{1}{T}\int_{-\frac{NT}{2}}^{\frac{NT}{2}}\,x(t)e^{-j2\pi\,tf}\,dt</math>

Latest revision as of 17:19, 30 November 2008

If we have a signal, such as following:

Error creating thumbnail: File missing

How do we put it into computer?

We can use A/D converter and a low pass filter to sample the signal that is wanted instead of from t=to:

Error creating thumbnail: File missing

But then we have to make it periodic, so we convolve it with impulse function with NT apart to have impulse function in both time and frequency domain:

Error creating thumbnail: File missing

From the equations of final signal in both time and frequency domain, we can see that in the computer we have x(n) and in the frequency domain:

n=0N1x(nT)ej2πfnT1NTm=δ(fnNT)=m=1NTn=0N1x(nT)ej2πmNTnTδ(fnNT)

Then the areas of the impulse functions is:

n=0N1x(n)ej2πnmN

Which is the definition of the DFT(x(n)).

Property of the DFT

  • DFT is periodic.

Proof:

X(m+N)=n=0N1x(n)ej2πn(m+N)N=n=0N1x(n)ej2πnmNej2πnNN=n=0N1x(n)ej2πnmN=X(m)

Inverse DFT

Let's try to get back x(l) if we have X(m)

X(m)=n=0N1x(n)ej2πnmN

Let's try do some trick to this DFT, let's sum it up and with exponents tag along.

m=0N1X(m)ej2πlmN=m=0N1n=0N1x(n)ej2πnmNej2πlmN=n=0N1x(n)m=0N1ej2π(ln)mN

Note: m=0N1ej2π(ln)mN will be N if l=n.

Let ej2π(ln)mN=rm then r=ej2π(ln)N

So we know the sum of rm=S=1+r+r2+r3+...+rN1

Therefore, we can divide r at both side of equation and get S1r=SrN1,S(1r1)=1rrN1,S=1rN1r

Think about this, if ln,r=ej2π(ln)N,S=1ej2π(ln)1ej2π(ln)N=0, since ej2π(ln)=1 for any integer of l and n.

So m=0N1X(m)ej2πlmN=n=0N1x(n)Nδn,l=Nx(l)

x(l)=1Nm=0N1X(m)ej2πlmNIDFT(X(m))

Key points to note:

  • By doing the DFT, we make the signal periodic in both time domain and frequency domain.

X(m+N)=X(m),x(n+N)=x(n)

  • X(m)form>N2 corresponds to X(mN)

Approximation of Fourier integral

We can kind of see the DFT as an approximation to the Fourier integral.

X(m)=n=0N1x(n)ej2πnmN=1Tn=N2N1N2x(n)ej2πnTmNTT1TNT2NT2x(t)ej2πtfdt