10/09 - Fourier Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
Line 48: Line 48:
|<math>=\left \langle x(t) \mid e^{j2\pi ft}\right \rangle_t</math>
|<math>=\left \langle x(t) \mid e^{j2\pi ft}\right \rangle_t</math>
|-
|-
|<math>F^{-1}[x(t)]\,\!</math>
|<math>F^{-1}[X(f)]\,\!</math>
|<math>=x(t)\,\!</math>
|<math>=x(t)\,\!</math>
|<math>=\int_{-\infty}^{\infty} X(f) e^{j2\pi ft}df</math>
|<math>=\int_{-\infty}^{\infty} X(f) e^{j2\pi ft}df</math>
|<math>=\left \langle X(f) \mid e^{-j2\pi ft}\right \rangle_f</math>
|<math>=\left \langle X(f) \mid e^{-j2\pi ft}\right \rangle_f</math>
|}
|}

==Examples==
==Examples==
{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"

Latest revision as of 12:49, 4 December 2008

Assuming the function is perodic with the period T

Fourier Transform

Remember from 10/02 - Fourier Series

If we let

Remember

Definitions

Examples

Sifting property of the delta function

The dirac delta function is defined as any function, denoted as , that works for all variables that makes the following equation true:

  • When dealing with , it behaves slightly different than dealing with . When dealing with , note that the delta function is . The is tacked onto the front. Thus, when dealing with , you will often need to multiply it by to cancel out the .

More properties of the delta function

Let and