Homework One: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 2: Line 2:


----
----
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br/>


<math>


<math>
\int_{-T/2}^{T/2}e^{j2 \pi (n-m)t/T}\,dx = \left\{ \begin{array}{rcl} T & \mbox{for}& n=m \\ 0 & \mbox{else} \end{array}\right.


\int_{-T/2}^{T/2}e^{j2 \pi (n-m)t/T}\,dx
</math>


=      T  if  n = 0
----
        0  else


</math>
[http://fweb.wallawalla.edu/class-wiki/index.php/Nick_Christman Back]

Latest revision as of 15:53, 31 October 2009

Determine the integral:


Nick Christman

T/2T/2ej2π(nm)t/Tdx={Tforn=m0else


Back