Homework Four: Difference between revisions
Jump to navigation
Jump to search
(New page: <b><u>Nick Christman</u></b><br><br> '''Find <math>\mathcal{F}[10^{t}g(t)e^{j2 \pi ft_{0}}]</math><br/>''' To begin, we know that<br/> <math> \mathcal{F}[10^{t}g(t)e^{...) |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
[[Fourier Transform Properties|<b>Fourier Transform Properties</b>]] |
|||
---- |
|||
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> |
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> |
||
'''Find <math>\mathcal{F}[ |
1. '''Find <math>\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] </math><br/>''' |
||
This is a fairly straightforward property and is known as ''complex modulation''<br/> |
|||
<math> |
|||
⚫ | |||
</math> |
|||
Combining terms, we get: |
|||
<math> |
|||
To begin, we know that<br/> |
|||
⚫ | |||
</math> |
|||
<br/> |
|||
Now let's make the following substitution <math> \displaystyle \theta = f-f_{0}</math> |
|||
⚫ | |||
This now gives us a surprisingly familiar function: |
|||
But recall that <math>e^{j2 \pi f(t_{0}-t)} \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math> |
|||
<math> |
|||
\int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi \theta t} \,dt |
|||
</math> |
|||
<br/> |
|||
This looks just like <math> \displaystyle G(\theta )</math>! |
|||
Because of this definition, our problem has now been simplified significantly: <br/> |
|||
We can now conclude that: |
|||
⚫ | |||
<br/> |
|||
<math> |
|||
Therefore, |
|||
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(\theta ) = G(f-f_{0}) |
|||
</math> |
|||
<br> |
|||
Looks good - Kevin |
|||
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = 10^{t_0}g(t_0) </math> |
Latest revision as of 08:36, 8 November 2009
Nick Christman
1. Find
This is a fairly straightforward property and is known as complex modulation
Combining terms, we get:
Now let's make the following substitution
This now gives us a surprisingly familiar function:
This looks just like !
We can now conclude that:
Looks good - Kevin