Laplace transforms: Critically Damped Motion: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
New page: place holder
 
 
(86 intermediate revisions by 2 users not shown)
Line 1: Line 1:
place holder
=Using the Laplace Transform to solve a spring mass system that is  critically damped=
 
==Problem Statement==
An 8 pound weight is attached to a spring with a spring constant k of 4 lb/ft.
The spring is stretched 2 ft and rests at its equilibrium position.
It is then released from rest with an initial upward velocity of 3 ft/s.
The system contains a damping force of 2 times the initial velocity.
 
==Solution==
 
 
===Things we know===
 
 
<math>m=\frac{8}{32}=\frac1 4 slugs</math>
 
<math>\text {k=4}\,</math>
 
<math>\text {C=2}\,</math>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
<math>\text {x(0)=0}\,</math>
 
<math>\dot{x}(0)=-3</math>
 
 
 
<math>\text {Standard equation: }\,</math>
<math>m\frac{d^2x}{dt^2}+C\frac{dx}{dt}+khx=0</math>
 
===Solving the problem===
<math>\text {Therefore the equation representing this system is.}\,</math>
 
<math>\frac1 4 \frac{d^2x}{dt^2}=-4x-2\frac{dx}{dt}</math>
 
<math>\text {Now we put the equation in standard form}\,</math>
 
<math>\frac{d^2x}{dt^2}+8\frac{dx}{dt}+16x=0</math>
 
 
<math>\text {Now that we have the equation written in standard form we need to send}\,</math>
<math>\text {it through the Laplace Transform.}\,</math>
 
<math>\mathcal{L}[\frac{d^2x}{dt^2}+8\frac{dx}{dt}+16x]</math><br /><br />
 
<math>\text {And we get the equation (after some substitution and simplification)}.\,</math>
 
<math>\mathbf s^2 {X}(s)+8\mathbf s{X}(s)+16\mathbf{X}(s)=-3</math><br /><br />
 
<math>\mathbf {X}(s)(s^2+8s+16)=-3</math><br /><br />
 
 
<math>\mathbf {X}(s)=-\frac{3}{(s+4)^2} </math><br /><br />
 
<math>\text {Now that we have completed the Laplace Transform}\,</math>
<math>\text {and solved for X(s) we must so an inverse Laplace Transform. }\,</math>
 
<math>\mathcal{L}^{-1}[-\frac{3}{(s+4)^2}]</math><br /><br />
 
<math>\text {and we get, by using the table of transforms on p. 515 of the text bokk}\,</math>
 
<math>\mathbf {x}(t)=-3te^{-4t}</math><br /><br />
 
<math>\text {So there you have it the equation of a Critically Damped spring mass system.}\,</math>
 
==Apply the Initial and Final Value Theorems to find the initial and final values==
 
:Initial Value Theorem
 
::<math>\lim_{s\rightarrow \infty} sF(s)=f(0)\,</math>
 
:Final Value Theorem
 
::<math>\lim_{s\rightarrow 0} sF(s)=f(\infty)\,</math>
 
 
===Applying this to our problem===
 
<math>\text {The Initial Value Theorem}\,</math>
 
<math>\lim_{s\rightarrow \infty} \mathbf {sX}(s)=-\frac{3}{(s+4)^2}\,</math>
 
<math>\lim_{s\rightarrow \infty} \mathbf s{X}(s)=-\frac{3}{(\infty+4)^2}=0\,</math>
 
 
<math>\text {So as you can see the value for the initial position will be 0. }\,</math>
 
<math>\text {Which makes sense because the system is initially in equilibrium. }\,</math>
 
<math>\text {The Final Value Theorem}\,</math>
 
<math>\lim_{s\rightarrow 0} \mathbf s{X}(s)=-\frac{3}{(s+4)^2}\,</math>
 
 
<math>\lim_{s\rightarrow 0} \mathbf s{X}(s)=-\frac{3}{(0+4)^2}=-\frac 3 {16}\,</math>
 
<math>\text {This shows the final value to be}\,</math>
<math>-\frac{3}{16}ft</math>
 
<math>\text {Which appears to mean the system will be below equilibrium after a long time. }\,</math>
 
 
==Bode Plot of the transfer function==
 
===Transfer Function===
 
<math>\mathbf {X}(s)=-\frac{3}{(s+4)^2} </math><br /><br />
 
 
===Bode Plot===
 
<math>\text {This plot is done using the control toolbox in MatLab. }\,</math>
 
[[Image:bode.jpg|700px|thumb|left|Fig (1)]]
 
 
 
 
      ==Break Points and Asymptotes==                                                                                                                                                     
 
<math>\text {A break point is defined by a place in the bode plot where a change occurs.}\,</math>
 
<math>\text {To find your break points you must start with a transfer function. }\,</math>
 
<math>\text {Transfer Function: }\,</math>
 
 
<math>\mathbf {X}(s)=-\frac{3}{(s+4)^2} </math><br /><br />
 
 
<math>\text {A break point is located at any value where s = what is being added to it.  }\,</math>
<math>\text {So for this transfer function its at s=4 (that is also the asymptotes location). }\,</math>
 
=Convolution=
<math>\text {The convolution equation is as follows:  }\,</math>
 
<math>
x(t)=x_{in}(t) * h(t) = \int_{0}^{t} {x(t_0) \, h(t-t_0) \, dt_0}
</math>
 
<math>\text {It does basically the same thing as the Laplace Transform.  }\,</math>
<math>\text {To start we must inverse transform our transfer function  }\,</math>
 
 
<math>\mathbf {X}(s)=-\frac{3}{(s+4)^2} </math><br /><br />
 
<math>\text {Which once more yields:  }\,</math>
 
<math>\mathbf {x}(t)=-3te^{-4t}</math><br /><br />
 
<math>\text {Then we put this into the convolution integral:  }\,</math>
 
<math>
x(t)=x_{in}(t) * h(t) = \int_{0}^{t} {-3(t-t_0)e^{-4t-t_0} \, dt_0}
</math>
 
<math>\text {Which once more yeilds:  }\,</math>
 
 
<math>\mathbf {x}(t)=(-cte^{-4t})</math><br /><br />
 
 
<math>\text {Not exactly the same but remember initial conditions arnt used}\,</math>
 
 
 
=State Space=
 
<math>\text {Using state equatons is just another way to solve a system modeled by an ODE }\,</math>
 
<math>\text {First we need to add an applied force so u(t)=2N  }\,</math>
 
<math>m=\frac{8}{32}=\frac1 4 slugs</math>
 
<math>\text {k=4}\,</math>
 
<math>\text {C=2}\,</math>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
<math>\text {x(0)=0}\,</math>
 
<math>\dot{x}(0)=-3</math>
 
<math>\ddot{x}(0)=0</math>
 
 
<math>\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix}=\begin{bmatrix} 0 & 1 \\ -k/m & -C/m \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix}u(t)</math>
 
 
 
 
 
 
 
 
 
---
 
Written By: Mark Bernet
 
 
Error Checked By: Greg Peterson

Latest revision as of 16:58, 18 November 2009

Using the Laplace Transform to solve a spring mass system that is critically damped

Problem Statement

An 8 pound weight is attached to a spring with a spring constant k of 4 lb/ft. The spring is stretched 2 ft and rests at its equilibrium position. It is then released from rest with an initial upward velocity of 3 ft/s. The system contains a damping force of 2 times the initial velocity.

Solution

Things we know

m=832=14slugs

k=4

C=2

x(0)=0

x˙(0)=3


Standard equation:  md2xdt2+Cdxdt+khx=0

Solving the problem

Therefore the equation representing this system is.

14d2xdt2=4x2dxdt

Now we put the equation in standard form

d2xdt2+8dxdt+16x=0


Now that we have the equation written in standard form we need to send it through the Laplace Transform.

[d2xdt2+8dxdt+16x]

And we get the equation (after some substitution and simplification).

s2X(s)+8sX(s)+16X(s)=3

X(s)(s2+8s+16)=3


X(s)=3(s+4)2

Now that we have completed the Laplace Transform and solved for X(s) we must so an inverse Laplace Transform. 

1[3(s+4)2]

and we get, by using the table of transforms on p. 515 of the text bokk

x(t)=3te4t

So there you have it the equation of a Critically Damped spring mass system.

Apply the Initial and Final Value Theorems to find the initial and final values

Initial Value Theorem
limssF(s)=f(0)
Final Value Theorem
lims0sF(s)=f()


Applying this to our problem

The Initial Value Theorem

limssX(s)=3(s+4)2

limssX(s)=3(+4)2=0


So as you can see the value for the initial position will be 0. 

Which makes sense because the system is initially in equilibrium. 

The Final Value Theorem

lims0sX(s)=3(s+4)2


lims0sX(s)=3(0+4)2=316

This shows the final value to be 316ft

Which appears to mean the system will be below equilibrium after a long time. 


Bode Plot of the transfer function

Transfer Function

X(s)=3(s+4)2


Bode Plot

This plot is done using the control toolbox in MatLab. 

Error creating thumbnail: File missing
Fig (1)



     ==Break Points and Asymptotes==                                                                                                                                                      

A break point is defined by a place in the bode plot where a change occurs.

To find your break points you must start with a transfer function. 


Transfer Function: 


X(s)=3(s+4)2


A break point is located at any value where s = what is being added to it.  So for this transfer function its at s=4 (that is also the asymptotes location). 

Convolution

The convolution equation is as follows: 

x(t)=xin(t)*h(t)=0tx(t0)h(tt0)dt0

It does basically the same thing as the Laplace Transform.  To start we must inverse transform our transfer function 


X(s)=3(s+4)2

Which once more yields: 

x(t)=3te4t

Then we put this into the convolution integral: 

x(t)=xin(t)*h(t)=0t3(tt0)e4tt0dt0

Which once more yeilds: 


x(t)=(cte4t)


Not exactly the same but remember initial conditions arnt used


State Space

Using state equatons is just another way to solve a system modeled by an ODE 

First we need to add an applied force so u(t)=2N 

m=832=14slugs

k=4

C=2

x(0)=0

x˙(0)=3

x¨(0)=0


[x˙x¨]=[01k/mC/m][xx˙]+[01/m]u(t)





---

Written By: Mark Bernet


Error Checked By: Greg Peterson