Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
===Problem Statement===
===Problem Statement===


'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum.  Use State Space methods.  Describe the eigenmodes of the system.'''
 
'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum.  Use State Space methods.  Describe the eigenmodes of the system. Solve Using the Matrix Exponential'''


   [[Image:Coupled_Oscillator.jpg]]
   [[Image:Coupled_Oscillator.jpg]]
'''Initial Conditions:'''
'''Initial Conditions:'''


:<math>m_1= 15 kg\,</math>
:<math>m_1= 10 kg\,</math>


:<math>m_2 = 15 kg\,</math>
:<math>m_2 = 10 kg\,</math>


:<math>k1=100 N/m\,</math>
:<math>k1=100 N/m\,</math>
Line 15: Line 16:


:<math>k3=100 N/m\,</math>
:<math>k3=100 N/m\,</math>
'''F=ma'''
:<math>\ddot{x_1}=\frac{x_1(k_1-k_2)}{m_1}-\frac{x_2*k_1}{m_1}\,</math>
:<math>\ddot{x_2}=\frac{x_2(k_1+k_2)}{m_2}-\frac{x_1*k_1}{m_2}\,</math>


'''State Equations'''
'''State Equations'''
Line 32: Line 37:
\frac{(k_1-k_2)}{m_1}&0&\frac{-k_1}{m_1}&0 \\
\frac{(k_1-k_2)}{m_1}&0&\frac{-k_1}{m_1}&0 \\
0&0&0&1 \\
0&0&0&1 \\
\frac{k_1}{m_2}&0&\frac{(k_1+k_2)}{m_2}&0  
\frac{-k_1}{m_2}&0&\frac{(k_1+k_2)}{m_2}&0  
\end{bmatrix}
\end{bmatrix}


Line 75: Line 80:
\begin{bmatrix}
\begin{bmatrix}
0&1&0&0 \\
0&1&0&0 \\
\frac{(-50 N/m)}{15 kg}&0&\frac{-100 N/m}{15 kg}&0 \\
\frac{(-50 N/m)}{10 kg}&0&\frac{-100 N/m}{10 kg}&0 \\
0&0&0&1 \\
0&0&0&1 \\
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&0  
\frac{-100 N/m}{10 kg}&0&\frac{(250 N/m)}{10 kg}&0  
\end{bmatrix}
\end{bmatrix}


Line 90: Line 95:
</math>
</math>


<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
-5&0&-10&0 \\
0&0&0&1 \\
-10&0&25&0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}
</math>
'''Eigenvalues'''
:<math>\lambda_1=-5.29412\,</math>
:<math>\lambda_2=2.83333i\,</math>
:<math>\lambda_3= -2.83333i\,</math>
:<math>\lambda_4=0\,</math>
'''Eigenvectors'''
:<math>k_1=\begin{bmatrix}
-.05379\\
.28475 \\
.17764 \\
-.94046
\end{bmatrix}</math>
:<math>k_2=\begin{bmatrix}
-.31854i\\
.90253 \\
-.09645i\\
.27326
\end{bmatrix}</math>
:<math>k_3=\begin{bmatrix}
.31854i\\
.90253 \\
.09645i \\
.27326
\end{bmatrix}</math>
:<math>k_4=\begin{bmatrix}
-.05379\\
-.28475 \\
.17764 \\
.94046
\end{bmatrix}</math>
'''Standard Equation'''
:<math>x=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math>
:<math>\ x=c_1</math><math>\begin{bmatrix}
-.05379\\
.28475 \\
.17764 \\
-.94046
\end{bmatrix}\,</math><math>e^{-5.29412}+ c_2\,</math><math>
\begin{bmatrix}
-.31854i\\
.90253 \\
-.09645i\\
.27326
\end{bmatrix}\,</math><math>e^{2.83333i}+ c_3\,</math><math>\begin{bmatrix}
.31854i\\
.90253 \\
.09645i \\
.27326
\end{bmatrix}\,</math><math>e^{-2.83333i}+ c_4\,</math><math>\begin{bmatrix}
-.05379\\
-.28475 \\
.17764 \\
.94046
\end{bmatrix}\,
</math><math>e^{0}\,</math>


'''Eigenmodes'''
'''Eigenmodes'''


:There are three eigenmodes for the system
:There are two eigenmodes for the system


::1) m1 and m2 oscillating together
::1) m1 and m2 oscillating together
Line 100: Line 205:




'''Matrix Exponential using transformation z=Tx'''
<math>T^{-1}=[k_1|k_2|k_3|k_4]\,</math>
<math>z=Tx\,</math>
<math>\dot{z}=TAT^{-1}z \,</math>
<math>\dot{z}=\,</math>
<math>\begin{bmatrix}
-5.2941&0&0&0 \\
0&2.833i&0&0 \\
0&0&-2.83333i&0 \\
0&0&0&5.2941
\end{bmatrix}\,
</math>
<math>z\,</math>
<math>B=TAT^{-1}=\begin{bmatrix}
-5.2941&0&0&0 \\
0&2.833i&0&0 \\
0&0&-2.83333i&0 \\
0&0&0&5.2941
\end{bmatrix}\,</math>
<math>z=e^{Bt}z(0)\,</math>
<math>e^{Bt}=\begin{bmatrix}
e^{-5.2941t}&0&0&0 \\
0&e^{2.833it}&0&0 \\
0&0&e^{-2.83333it}&0 \\
0&0&0&e^{5.2941t}
\end{bmatrix}\,</math>
<math>x=T^{-1}z\,</math>
<math>x=T^{-1}e^{Bt}Tx(0)\,</math>
<math>e^{Pt}=T^{-1}e^{Bt}T\,</math>
<math>e^{Pt}=\,</math>lots of variables
'''Another way to solve using the Matrix exponential'''
<math>e^{At}=\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\}\,</math>
<math>[SI-A]\,</math>
=
<math>
\begin{bmatrix}
S&1&0&0 \\
\frac{(-50 N/m)}{15 kg}&S&\frac{-100 N/m}{15 kg}&0 \\
0&0&S&1 \\
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&S
\end{bmatrix}
</math>




'''Solve Using the Matrix Exponential'''
<math>[SI-A]^{-1} =\,</math> (something too large for my calculator to display or that I want to type out)




<math>e^{At}=\mathcal{L}^{-1}\left\{(SI-A)^{-1}\right\},\,</math>
<math>\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\} = \,</math>(something too large for my calculator to display or that I want to type out)


Written by: Andrew Hellie
Written by: Andrew Hellie

Latest revision as of 23:28, 13 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential

 

Initial Conditions:

m1=10kg
m2=10kg
k1=100N/m
k2=150N/m
k3=100N/m

F=ma

x1¨=x1(k1k2)m1x2*k1m1
x2¨=x2(k1+k2)m2x1*k1m2

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)10kg0100N/m10kg00001100N/m10kg0(250N/m)10kg0][x1x˙1x2x˙2]


[x1˙x1¨x2˙x2¨] = [0100501000001100250][x1x˙1x2x˙2]


Eigenvalues

λ1=5.29412
λ2=2.83333i
λ3=2.83333i
λ4=0


Eigenvectors

k1=[.05379.28475.17764.94046]


k2=[.31854i.90253.09645i.27326]


k3=[.31854i.90253.09645i.27326]


k4=[.05379.28475.17764.94046]

Standard Equation

x=c1k1eλ1t+c2k2eλ2t+c3k3eλ3t+c4k4eλ4t
x=c1[.05379.28475.17764.94046]e5.29412+c2[.31854i.90253.09645i.27326]e2.83333i+c3[.31854i.90253.09645i.27326]e2.83333i+c4[.05379.28475.17764.94046]e0

Eigenmodes

There are two eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference


Matrix Exponential using transformation z=Tx

T1=[k1|k2|k3|k4]

z=Tx


z˙=TAT1z


z˙= [5.294100002.833i00002.83333i00005.2941] z


B=TAT1=[5.294100002.833i00002.83333i00005.2941]


z=eBtz(0)


eBt=[e5.2941t0000e2.833it0000e2.83333it0000e5.2941t]

x=T1z

x=T1eBtTx(0)

ePt=T1eBtT

ePt=lots of variables

Another way to solve using the Matrix exponential


eAt=1{[SIA]1}


[SIA] = [S100(50N/m)15kgS100N/m15kg000S1100N/m15kg0(250N/m)15kgS]


[SIA]1= (something too large for my calculator to display or that I want to type out)


1{[SIA]1}=(something too large for my calculator to display or that I want to type out)

Written by: Andrew Hellie