Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
 
(48 intermediate revisions by the same user not shown)
Line 1: Line 1:
By '''Jimmy Apablaza'''
By '''Jimmy Apablaza'''
By '''Jimmy Apablaza'''


Line 12: Line 11:
'''Assumptions:'''
'''Assumptions:'''
* the system oscillates vertically under the influence of gravity.
* the system oscillates vertically under the influence of gravity.
* the mass of both rod are neligible
* the mass of both rod are negligible
* no dumpung forces act on the system
* no damping forces act on the system
* positive direction to the right.
* positive direction to the right.


Line 20: Line 19:
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime}cos(\theta_1-\theta_2) + m_2l_1l_2(\theta_2^{\prime})^2sin(\theta_1-\theta_2) + (m_1+m_2)l_1gsin\theta_1 = 0</math>
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime}cos(\theta_1-\theta_2) + m_2l_1l_2(\theta_2^{\prime})^2sin(\theta_1-\theta_2) + (m_1+m_2)l_1gsin\theta_1 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime}cos(\theta_1-\theta_2) - m_2l_1l_2(\theta_1^{\prime})^2sin(\theta_1-\theta_2) + m_2l_2gsin\theta_2 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime}cos(\theta_1-\theta_2) - m_2l_1l_2(\theta_1^{\prime})^2sin(\theta_1-\theta_2) + m_2l_2gsin\theta_2 = 0</math>



In order to linearize these equations, we assume that the displacements <math>\theta_1</math> and <math>\theta_2</math> are small enough so that <math>cos(\theta_1-\theta_2)\approx1</math> and <math>sin(\theta_1-\theta_2)\approx0</math>. Thus,
In order to linearize these equations, we assume that the displacements <math>\theta_1</math> and <math>\theta_2</math> are small enough so that <math>cos(\theta_1-\theta_2)\approx1</math> and <math>sin(\theta_1-\theta_2)\approx0</math>. Thus,
Line 25: Line 25:
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime} + (m_1+m_2)l_1g\theta_1 = 0</math>
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime} + (m_1+m_2)l_1g\theta_1 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime} + m_2l_2g\theta_2 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime} + m_2l_2g\theta_2 = 0</math>

== Solution ==

Since our concern is about the motion functions, we will assign the masses <math>m_1</math> and <math>m_2</math>, the rod lenghts <math>l_1</math> and <math>l_1</math>, and gravitational force <math>g</math> constants to different variables as follows,

: <math>A=(m_1+m_2)l_1^2 \quad B=m_2l_1l_2 \quad C=(m_1+m_2)l_1g \quad D=m_2l_1^2 \quad E=m_2l_2g</math>

Hence,

: <math>A\theta_1^{''} + B\theta_2^{''} + C\theta_1 = 0</math>
: <math>D\theta_2^{''} + B\theta_1^{''} + E\theta_2 = 0</math>

Solving for <math>\theta_1^{''}</math> and <math>\theta_2^{''}</math> we obtain,

: <math>\theta_1^{''} = - \left ( \dfrac{B}{A} \right ) \theta_2^{''} - \left ( \dfrac{C}{A} \right ) \theta_1</math>
: <math>\theta_2^{''} = - \left ( \dfrac{B}{D} \right ) \theta_1^{''} - \left ( \dfrac{E}{D} \right ) \theta_2</math>

Therefore,

: <math>\theta_1^{''} = - \left ( \dfrac{CD}{AD+B^2} \right ) \theta_1 - \left ( \dfrac{BE}{AD+B^2} \right ) \theta_2 </math>
: <math>\theta_2^{''} = \left ( \dfrac{BC}{AD+B^2} \right ) \theta_1 - \left ( \dfrac{AE}{AD+B^2} \right ) \theta_2</math>

=== State Space ===

: <math>
\begin{bmatrix}
\theta_1^{'} \\ \theta_1^{''} \\ \theta_2^{'} \\ \theta_2^{''}
\end{bmatrix}

=

\widehat{A} \, \underline{x}(t) + \widehat{B} \, \underline{u}(t)

=

\begin{bmatrix}
0 & 1 & 0 & 0 \\
& & & \\
\dfrac{-CD}{AD-B^2} & 0 & \dfrac{BE}{AD-B^2} & 0 \\
& & & \\
0 & 0 & 0 & 1 \\
& & & \\
\dfrac{BC}{AD-B^2} & 0 & \dfrac{-AE}{AD-B^2} & 0 \\
\end{bmatrix}

\begin{Bmatrix}
\theta_1 \\ \theta_1^{'} \\ \theta_2 \\ \theta_2^{'}
\end{Bmatrix}

+

\widehat{0}

</math>

Let's plug some numbers. It's known that <math>g=32</math>. In addition, we assume that <math>m_1=3</math>, <math>m_2=1</math>, and <math>l_1=l_2=16</math>, so the constants defined previously become,

: <math>A=1024 \quad B=256 \quad C=2048 \quad D=256 \quad E=512</math>

Hence, the state space matrix is,

: <math>
\begin{bmatrix}
\theta_1^{'} \\ \theta_1^{''} \\ \theta_2^{'} \\ \theta_2^{''}
\end{bmatrix}

=

\begin{bmatrix}
0 & 1 & 0 & 0 \\
-\dfrac{8}{3} & 0 & \dfrac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
\dfrac{8}{3} & 0 & -\dfrac{8}{3} & 0 \\
\end{bmatrix}

\begin{Bmatrix}
\theta_1 \\ \theta_1^{'} \\ \theta_2 \\ \theta_2^{'}
\end{Bmatrix}

</math>

=== Eigenvalues & Eigenvectors ===
The eigenvalues and eigenvectors are easily obtained with the help of a TI-89 calculator. First, we consider the <math>\widehat{A}</math>'s identity matrix,

: <math>
[\lambda I-A]

=

\begin{bmatrix}
\lambda & 1 & 0 & 0 \\
-\dfrac{8}{3} & \lambda & \dfrac{2}{3} & 0 \\
0 & 0 & \lambda & 1 \\
\dfrac{8}{3} & 0 & -\dfrac{8}{3} & \lambda \\
\end{bmatrix}

</math>

Once we define the <math>\widehat{A}</math> matrix, the eigenvalues are determined by using the '''''eigVi()''''' function,

: <math>\lambda_1= 2 \mathbf{i}</math>
: <math>\lambda_2= -2 \mathbf{i}</math>
: <math>\lambda_3= 1.1547 \mathbf{i}</math>
: <math>\lambda_4= -1.1547 \mathbf{i}</math>

On the other hand, we use the '''''eigVc()''''' function to find the eigenvectors,

: <math>
k_1

=

\begin{bmatrix}
-0.2 \mathbf{i} \\
0.4 \\
0.4 \mathbf{i} \\
-0.8 \\
\end{bmatrix}

\quad

k_2

=

\begin{bmatrix}
0.2 \mathbf{i} \\
0.4 \\
-0.4 \mathbf{i} \\
-0.8 \\
\end{bmatrix}

\quad

k_3

=

\begin{bmatrix}
-0.29277 \mathbf{i} \\
0.33806 \\
0.58554 \mathbf{i} \\
-0.67621 \\
\end{bmatrix}

\quad

k_4

=

\begin{bmatrix}
0.29277 \mathbf{i} \\
0.33806 \\
0.58554 \mathbf{i} \\
0.67621 \\
\end{bmatrix}

</math>

=== Standard Equation ===
Now, we plug the eigenvalues and eigenvectors to produce the standar equation,

: <math>\underline{x} = c_1 \underline{k_1} e^{\lambda_1 t} + c_2 \underline{k}_2 e^{\lambda_2 t} + c_3 \underline{k_3} e^{\lambda_3 t} + c_4 \underline{k_4} e^{\lambda_4 t}</math>

: <math>

\underline{x}
=
c_1
\begin{bmatrix}
-0.2 \mathbf{i} \\
0.4 \\
0.4 \mathbf{i} \\
-0.8 \\
\end{bmatrix}
e^{2 \mathbf{i}}
+
c_2
\begin{bmatrix}
0.2 \mathbf{i} \\
0.4 \\
-0.4 \mathbf{i} \\
-0.8 \\
\end{bmatrix}
e^{-2 \mathbf{i}}
+
c_3
\begin{bmatrix}
-0.29277 \mathbf{i} \\
0.33806 \\
0.58554 \mathbf{i} \\
-0.67621 \\
\end{bmatrix}
e^{1.1547 \mathbf{i}}
+
c_4
\begin{bmatrix}
0.29277 \mathbf{i} \\
0.33806 \\
0.58554 \mathbf{i} \\
0.67621 \\
\end{bmatrix}
e^{-1.1547 \mathbf{i}}
</math>

=== Matrix Exponential ===
The matrix exponential is,

: <math>\dot{\bar{z}}=\hat{A}\bar{z}=TAT^{-1}\bar{z}</math>

where

: <math>
A
=
\begin{bmatrix}
0 & 1 & 0 & 0 \\
-\dfrac{8}{3} & 0 & \dfrac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
\dfrac{8}{3} & 0 & -\dfrac{8}{3} & 0 \\
\end{bmatrix}
</math>,

and

: <math>
T^{-1}
=
[k_1|k_2|k_3|k_4]
=
\begin{bmatrix}
-0.2 \mathbf{i} & 0.2 \mathbf{i} & -0.29277 \mathbf{i} & 0.29277 \mathbf{i} \\
0.4 & 0.4 & 0.33806 & 0.33806 \\
0.4 \mathbf{i} & -0.4 \mathbf{i} & 0.58554 \mathbf{i} & 0.58554 \mathbf{i} \\
-0.8 & -0.8 & -0.67621 & 0.67621 \\
\end{bmatrix}
</math>,

so

: <math>
T
=
(T^{-1})^{-1}
=
[k_1|k_2|k_3|k_4]^{-1}
=
\begin{bmatrix}
1.25 \mathbf{i} & 0.625 & -0.625 \mathbf{i} & -0.3125 \\
-1.25 \mathbf{i} & 0.625 & 0.625 \mathbf{i} & -0.3125 \\
0.853913 \mathbf{i} & 0.73951 & 0.426956 \mathbf{i} & 0.369755 \\
-0.853913 \mathbf{i} & 0.73951 & -0.426956 \mathbf{i} & 0.369755 \\
\end{bmatrix}
</math>

Again, we can resort to the TI-89 calculator. As it is mentioned above, the matrix exponential is obtained by typing '''''eigVc(a)^-1*a*eigVc(a)''''', where '''''a''''' is the <math>\widehat{A}</math> matrix. Thus,

: <math>
\dot{\bar{z}}
=
\hat{A}\bar{z}
=
TAT^{-1}\bar{z}
=
\begin{bmatrix}
2 \mathbf{i} & 0 & 0 & 0 \\
0 & -2 \mathbf{i} & 0 & 0 \\
0 & 0 & 1.1547 \mathbf{i} & 0 \\
0 & 0 & 0 & -1.1547 \mathbf{i} \\
\end{bmatrix}
\bar{z}
</math>

So, the exponential matrix becomes,

:<math>
\dot{\underline{x}}=\widehat{A}\underline{x}=T^{-1}e^{\hat{A}t}T\underline{x}=e^{At}\underline{x}
</math>

where

:<math>
e^{\hat{A}t}
=
\begin{bmatrix}
e^{2 \mathbf{i} t} & 0 & 0 & 0 \\
0 & e^{-2 \mathbf{i} t} & 0 & 0 \\
0 & 0 & e^{1.1547 \mathbf{i} t} & 0 \\
0 & 0 & 0 & e^{-1.1547 \mathbf{i} t} \\
\end{bmatrix}
</math>

Hence,

: <math>
\dot{\underline{x}}
=
\begin{bmatrix}
-0.2 \mathbf{i} & 0.2 \mathbf{i} & -0.29277 \mathbf{i} & 0.29277 \mathbf{i} \\
0.4 & 0.4 & 0.33806 & 0.33806 \\
0.4 \mathbf{i} & -0.4 \mathbf{i} & 0.58554 \mathbf{i} & 0.58554 \mathbf{i} \\
-0.8 & -0.8 & -0.67621 & 0.67621 \\
\end{bmatrix}
\begin{bmatrix}
e^{2 \mathbf{i} t} & 0 & 0 & 0 \\
0 & e^{-2 \mathbf{i} t} & 0 & 0 \\
0 & 0 & e^{1.1547 \mathbf{i} t} & 0 \\
0 & 0 & 0 & e^{-1.1547 \mathbf{i} t} \\
\end{bmatrix}
\begin{bmatrix}
1.25 \mathbf{i} & 0.625 & -0.625 \mathbf{i} & -0.3125 \\
-1.25 \mathbf{i} & 0.625 & 0.625 \mathbf{i} & -0.3125 \\
0.853913 \mathbf{i} & 0.73951 & 0.426956 \mathbf{i} & 0.369755 \\
-0.853913 \mathbf{i} & 0.73951 & -0.426956 \mathbf{i} & 0.369755 \\
\end{bmatrix}
\underline{x}
</math>

so, the matrix exponential can be solved using matrix multiplication.

Latest revision as of 11:46, 13 December 2009

By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are negligible
  • no damping forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear


In order to linearize these equations, we assume that the displacements and are small enough so that and . Thus,

Solution

Since our concern is about the motion functions, we will assign the masses and , the rod lenghts and , and gravitational force constants to different variables as follows,

Hence,

Solving for and we obtain,

Therefore,

State Space

Let's plug some numbers. It's known that . In addition, we assume that , , and , so the constants defined previously become,

Hence, the state space matrix is,

Eigenvalues & Eigenvectors

The eigenvalues and eigenvectors are easily obtained with the help of a TI-89 calculator. First, we consider the 's identity matrix,

Once we define the matrix, the eigenvalues are determined by using the eigVi() function,

On the other hand, we use the eigVc() function to find the eigenvectors,

Standard Equation

Now, we plug the eigenvalues and eigenvectors to produce the standar equation,

Matrix Exponential

The matrix exponential is,

where

,

and

,

so

Again, we can resort to the TI-89 calculator. As it is mentioned above, the matrix exponential is obtained by typing eigVc(a)^-1*a*eigVc(a), where a is the matrix. Thus,

So, the exponential matrix becomes,

where

Hence,

so, the matrix exponential can be solved using matrix multiplication.