Coupled Oscillator: Jonathan Schreven: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(13 intermediate revisions by the same user not shown)
Line 2: Line 2:


In this problem we will explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Here's a picture of what we are working with.
In this problem we will explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Here's a picture of what we are working with.
:[[Image:Double Oscillator System.JPG|500px||center|Double Mass/Spring Oscillator]]


== Equations of Equilibrium ==
== Equations of Equilibrium ==
Line 100: Line 102:
:<math>\lambda_1=2.6626i\,</math>
:<math>\lambda_1=2.6626i\,</math>
:<math>\lambda_2=-2.6626i\,</math>
:<math>\lambda_2=-2.6626i\,</math>
:<math>\lambda_3=1.18766i\,</math>
:<math>\lambda_3=1.1877i\,</math>
:<math>\lambda_4=-1.18766i\,</math>
:<math>\lambda_4=-1.1877i\,</math>


== Eigen Vectors ==
== Eigen Vectors ==
Line 136: Line 138:


We can now plug these eigen vectors and eigen values into the standard equation
We can now plug these eigen vectors and eigen values into the standard equation
:<math>x=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math>
:<math>\bar{x}=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math>


And our final answer is
And our final answer is
:<math>x=c_1\begin{bmatrix}
:<math>\bar{x}=c_1\begin{bmatrix}
0.2149i \\
0.2149i \\
-0.5722 \\
-0.5722 \\
Line 154: Line 156:
-0.5407i \\
-0.5407i \\
0.6421
0.6421
\end{bmatrix}e^{1.18766it}+c_4\begin{bmatrix}
\end{bmatrix}e^{1.1877it}+c_4\begin{bmatrix}
0.3500i \\
0.3500i \\
0.4157 \\
0.4157 \\
0.5407i \\
0.5407i \\
0.6421
0.6421
\end{bmatrix}e^{-1.18766it}</math>
\end{bmatrix}e^{-1.1877it}</math>
 
== Matrix Exponential ==
We already know what the matrix A is from our state space equation
:<math>\bold{A}=\begin{bmatrix}
0 & 1 & 0 & 0 \\
-4.5 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & -4 & 0
\end{bmatrix}</math>
 
And we know that the T-inverse matrix is
:<math>\bold{T^{-1}}=[\bar{k_1}|\bar{k_2}|\bar{k_3}|\bar{k_4}]\,</math>
:<math>\bold{T^{-1}}=\begin{bmatrix}
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
0.7409 & 0.7409 & 0.6421 & 0.6421
\end{bmatrix}</math>


It then follows that matrix T is
:<math>\bold{T}=\begin{bmatrix}
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
-0.6514i & 0.5484 & -0.5031 & 0.4236
\end{bmatrix}</math>


== Matrix Exponential ==
Now we can use the equation for a transfer function to help us solve through the use of matrix exponentials.
In this section we will use matrix exponentials to solve the same problem. First we start with this identity.
:<math>\bar{z}=\bold{T}\bar{x}\,</math>
:<math>\bar{z}=\bold{T}\bar{x}\,</math>


This can be rearranged by multiplying the inverse of '''T''' to the left side of the equation.
This can be rearranged by multiplying '''T-inverse''' to the left side of the equations.
:<math>\bold{T^{-1}}\bar{z}=\bar{x}\,</math>
:<math>\bold{T^{-1}}\bar{z}=\bar{x}\,</math>


Now we can use another identity that we already know
Now we can bring in the standard form of a state space equation
:<math>\dot{\bar{x}}=\bold{A}\bar{x}</math>
:<math>\dot{\bar{x}}=\bold{A}\bar{x}</math>


Line 178: Line 204:
:<math>\dot{\bar{z}}=\bold{TAT^{-1}}\bar{z}</math>
:<math>\dot{\bar{z}}=\bold{TAT^{-1}}\bar{z}</math>
:<math>\dot{\bar{z}}=\bold{\hat{A}}\bar{z}</math>
:<math>\dot{\bar{z}}=\bold{\hat{A}}\bar{z}</math>
This new equation has the same form as
:<math>\dot{\bar{x}}=\bold{A}\bar{x}</math>
where
where
:<math>\bold{\hat{A}}=\bold{TAT^{-1}}</math>
:<math>\bold{\hat{A}}=\bold{TAT^{-1}}</math>
 
:<math>\bold{\hat{A}}=
If we take the Laplace transform of this equation we can come up with the following
\begin{bmatrix}
:<math>\bar{z}=e^{\bold{A}t}\bar{z}(0)</math>
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
-0.6514i & 0.5484 & -0.5031 & 0.4236
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & 0 \\
-{(k_1+k_2)\over {m_1}} & 0 & {k_2\over {m_1}} & 0 \\
0 & 0 & 0 & 1 \\
{k_2\over {m_2}} & 0 & -{k_2\over {m_2}} & 0
\end{bmatrix}
\begin{bmatrix}
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
0.7409 & 0.7409 & 0.6421 & 0.6421
\end{bmatrix}</math>
:<math>=
\begin{bmatrix}
2.6626i & 0 & 0 & 0 \\
0 & -2.6626i & 0 & 0 \\
0 & 0 & 1.1877i & 0 \\
0 & 0 & 0 & 1.1877i
\end{bmatrix}</math>




If we take the Laplace transform of the above equation we can come up with the following
:<math>\bar{z}=e^{\bold{\hat{A}}t}\bar{z}(0)</math>
where
:<math>e^{\bold{\hat{A}}t}=\begin{bmatrix}
e^{2.6626it} & 0 & 0 & 0 \\
0 & e^{-2.6626it} & 0 & 0 \\
0 & 0 & e^{1.1877it} & 0 \\
0 & 0 & 0 & e^{1.1877it}
\end{bmatrix}</math>


We also know what T equals and we can solve it for our case
We then substitute this equation back into
:<math>\bold{T^{-1}}=[\bar{k_1}|\bar{k_2}|\bar{k_3}|\bar{k_4}]\,</math>
:<math>\bar{x}=\bold{T^{-1}}\bar{z}</math>
:<math>\bold{T^{-1}}=\begin{bmatrix}
and get
:<math>\bar{x}=\bold{T^{-1}}e^{\bold{\hat{A}}t}\bar{z}(0)</math>
:<math>\bar{x}=\bold{T^{-1}}e^{\bold{\hat{A}}t}\bold{T}\bar{x}(0)</math>
Notice here that
:<math>e^{\bold{A}t}=\bold{T^{-1}}e^{\bold{\hat{A}}t}\bold{T}</math>
:<math>e^{\bold{A}t}=\begin{bmatrix}
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
0.7409 & 0.7409 & 0.6421 & 0.6421
0.7409 & 0.7409 & 0.6421 & 0.6421
\end{bmatrix}</math>
\end{bmatrix}
 
\begin{bmatrix}
Taking the inverse of this we can solve for T
e^{2.6626it} & 0 & 0 & 0 \\
:<math>\bold{T}=\begin{bmatrix}
0 & e^{-2.6626it} & 0 & 0 \\
0 & 0 & e^{1.1877it} & 0 \\
0 & 0 & 0 & e^{1.1877it}
\end{bmatrix}
\begin{bmatrix}
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
-0.6514i & 0.5484 & -0.5031 & 0.4236
-0.6514i & 0.5484 & -0.5031 & 0.4236
\end{bmatrix}</math>
\end{bmatrix}
</math>
You can solve this with a computer program or your calculator and plug it into the equation for '''A'''. I have not listed the answer for this problem here because it is very messy and extremely long. I did calculate it to make sure it is solvable. But if your numbers are easier to work with you would finish by plugging this value into the equation below.
:<math>\bar{x}=e^{\bold{A}t}\bar{x}(0)</math>

Latest revision as of 15:41, 11 December 2009

Problem

In this problem we will explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Here's a picture of what we are working with.

Error creating thumbnail: File missing
Double Mass/Spring Oscillator

Equations of Equilibrium

Using F=ma we can then find our four equations of equilibrium.

Equation 1
F=maF=mx¨k1x1k2(x1x2)=m1x1¨k1x1m1k2(x1x2)m1=m1x1¨k1x1m1k2(x1x2)m1=x1¨k1+k2m1x1+k2m1x2=x1¨
Equation 2
F=maF=mx¨k2(x2x1)=m2x2¨k2(x2x1)m2=x2¨k2m2x2+k2m2x1=x2¨
Equation 3
x1˙=x1˙
Equation 4
x2˙=x2˙


Now we can put these four equations into the state space form.

[x1˙x1¨x2˙x2¨]=[0100(k1+k2)m10k2m100001k2m20k2m20][x1x1˙x2x2˙]+[0000]

Eigen Values

Once you have your equations of equilibrium in matrix form you can plug them into a calculator or a computer program that will give you the eigen values automatically. This saves you a lot of hand work. Here's what you should come up with for this particular problem given these initial conditions.

Given
m1=10kg
m2=5kg
k1=25Nm
k2=20Nm

We now have

[x1˙x1¨x2˙x2¨]=[01004.502000014040][x1x1˙x2x2˙]+[0000]

From this we get

λ1=2.6626i
λ2=2.6626i
λ3=1.1877i
λ4=1.1877i

Eigen Vectors

Using the equation above and the same given conditions we can plug everything to a calculator or computer program like MATLAB and get the eigen vectors which we will denote as k1,k2,k3,k4.

k1=[0.2149i0.57220.2783i0.7409]
k2=[0.2149i0.57220.2783i0.7409]
k3=[0.3500i0.41570.5407i0.6421]
k4=[0.3500i0.41570.5407i0.6421]

Solving

We can now plug these eigen vectors and eigen values into the standard equation

x¯=c1k1eλ1t+c2k2eλ2t+c3k3eλ3t+c4k4eλ4t

And our final answer is

x¯=c1[0.2149i0.57220.2783i0.7409]e2.6626it+c2[0.2149i0.57220.2783i0.7409]e2.6626it+c3[0.3500i0.41570.5407i0.6421]e1.1877it+c4[0.3500i0.41570.5407i0.6421]e1.1877it

Matrix Exponential

We already know what the matrix A is from our state space equation

A=[01004.502000014040]

And we know that the T-inverse matrix is

T1=[k1¯|k2¯|k3¯|k4¯]
T1=[0.2149i0.2149i0.3500i0.3500i0.57220.57220.41570.41570.2783i0.2783i0.5407i0.5407i0.74090.74090.64210.6421]

It then follows that matrix T is

T=[1.2657i0.47530.8193i0.30771.2657i0.47530.8193i0.30770.6514i0.54840.5031i0.42360.6514i0.54840.50310.4236]

Now we can use the equation for a transfer function to help us solve through the use of matrix exponentials.

z¯=Tx¯

This can be rearranged by multiplying T-inverse to the left side of the equations.

T1z¯=x¯

Now we can bring in the standard form of a state space equation

x¯˙=Ax¯

Combining the two equations we then get

T1z¯˙=AT1z¯

Multiplying both sides of the equation on the left by T we get

z¯˙=TAT1z¯
z¯˙=A^z¯

where

A^=TAT1
A^=[1.2657i0.47530.8193i0.30771.2657i0.47530.8193i0.30770.6514i0.54840.5031i0.42360.6514i0.54840.50310.4236][0100(k1+k2)m10k2m100001k2m20k2m20][0.2149i0.2149i0.3500i0.3500i0.57220.57220.41570.41570.2783i0.2783i0.5407i0.5407i0.74090.74090.64210.6421]
=[2.6626i00002.6626i00001.1877i00001.1877i]


If we take the Laplace transform of the above equation we can come up with the following

z¯=eA^tz¯(0)

where

eA^t=[e2.6626it0000e2.6626it0000e1.1877it0000e1.1877it]

We then substitute this equation back into

x¯=T1z¯

and get

x¯=T1eA^tz¯(0)
x¯=T1eA^tTx¯(0)

Notice here that

eAt=T1eA^tT
eAt=[0.2149i0.2149i0.3500i0.3500i0.57220.57220.41570.41570.2783i0.2783i0.5407i0.5407i0.74090.74090.64210.6421][e2.6626it0000e2.6626it0000e1.1877it0000e1.1877it][1.2657i0.47530.8193i0.30771.2657i0.47530.8193i0.30770.6514i0.54840.5031i0.42360.6514i0.54840.50310.4236]

You can solve this with a computer program or your calculator and plug it into the equation for A. I have not listed the answer for this problem here because it is very messy and extremely long. I did calculate it to make sure it is solvable. But if your numbers are easier to work with you would finish by plugging this value into the equation below.

x¯=eAtx¯(0)