Class Notes 1-5-2010: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Image:January_5_graph_1.jpg|200px|thumb|left|Modeling functions as vectors. Using function approximations, the vector path is described.]]
This article covers the notes given in class on January 5, 2010.
==Subjects Covered==
==Subjects Covered==
1) Linear Systems
1) Linear Systems
Line 5: Line 7:




[[Image:Figure_1.jpg|400px|thumb|left|Functions graphed in vector form.]]
[[Image:Figure_1.jpg|200px|thumb|left|Functions graphed in vector form.]]




[[Image:January_5_graph_1.jpg|500px|thumb|left|Modeling functions as vectors. Using function approximations, the vector path is described.]]




The individual component representation of vector <math> \vec{v} </math> in the x-direction.
[[Image:January_5_graph_2.jpg|400px|thumb|left|Function waves with varying periods based on the function x(t) = x(t+T)]]

:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math>
:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math>
The two-dimensional example of a vector in its components with the vector designations.
:<math> \mathbf{\hat{v}} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math>
:<math> \mathbf{\hat{v}} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math>
:<math> \vec{v} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math>
This is the summation used to represent the vector <math> \vec{v} </math> as having as many dimensions as needed to express its full value:
:<math> \vec{v} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math>
:<math> \langle v_x, v_y\rangle</math>
:<math> \langle v_x, v_y\rangle</math>
This is the equation for finding the distance between the two vectors <math> \vec{u} </math> and <math> \vec{v} </math> who are separated by angle <math> \theta </math>.
:<math> \mathbf{\hat{u}} \cdot \mathbf{\hat{v}} = |\mathbf{\hat{u}}| |\mathbf{\hat{v}}| \cos\theta </math>
:<math> \vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos\theta </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} (\mathbf{\hat{i}} \cdot \mathbf{\hat{i}}) + v_\mathrm{y} \mathbf{\hat{j}} \cdot \mathbf{\hat{i}} </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} </math>
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math>
:<math> \delta_\mathrm{i,m} \equiv \begin{cases} 1, & \mbox{if } i = m \\ 0, & \mbox{else} \end{cases}</math>


==Example==
[[Image:January_5_graph_2.jpg|200px|thumb|left|Function waves with varying periods based on the function x(t) = x(t+T)]]
Given function: <math> x(t) = x(t+T) \,</math>
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math>
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math>

1) Use vector analogy
1) Use vector analogy
:<math> x(t) \cdot \sin \left( \frac {2\pi mt} {T} \right) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \cdot \sin \left( \frac {2\pi mt} {T} \right) \right] </math>
:<math> x(t) \cdot \sin \left( \frac {2\pi mt} {T} \right) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \cdot \sin \left( \frac {2\pi mt} {T} \right) \right] </math>


:<math> \int_{\frac {-T} {2}}^{\frac {T} {2}} x(t) \sin \left( \frac {2\pi mt} {T} \right) \,dt = v_m</math>
:<math> \int_{\frac {-T} {2}}^{\frac {T} {2}} x(t) \sin \left( \frac {2\pi mt} {T} \right) \,dt = v_m</math>



==External Links==
==External Links==
*[[http://people.wallawalla.edu/~Rob.Frohne/ClassNotes/ENGR351/2010w/Keystone/index.php Class Notes].].
*[http://people.wallawalla.edu/~Rob.Frohne/ClassNotes/ENGR351/2010w/Keystone/index.php Class Notes].


==Authors==
==Authors==
Line 34: Line 42:


Brian Roath
Brian Roath

==Read By==

==Reviewed By==
*[[Gratias, Ryan|Ryan Gratias]]

Latest revision as of 11:37, 20 January 2010

Modeling functions as vectors. Using function approximations, the vector path is described.

This article covers the notes given in class on January 5, 2010.

Subjects Covered

1) Linear Systems

2) Functions as Vectors


Functions graphed in vector form.



The individual component representation of vector in the x-direction.

The two-dimensional example of a vector in its components with the vector designations.

This is the summation used to represent the vector as having as many dimensions as needed to express its full value:

This is the equation for finding the distance between the two vectors and who are separated by angle .

Example

Function waves with varying periods based on the function x(t) = x(t+T)

Given function:

1) Use vector analogy

External Links

Authors

Colby Fullerton

Brian Roath

Read By

Reviewed By