Class Notes 1-5-2010: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(12 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
⚫ | |||
This article covers the notes given in class on January 5, 2010. |
|||
==Subjects Covered== |
==Subjects Covered== |
||
1) Linear Systems |
1) Linear Systems |
||
Line 5: | Line 7: | ||
[[Image:Figure_1.jpg| |
[[Image:Figure_1.jpg|200px|thumb|left|Functions graphed in vector form.]] |
||
⚫ | |||
The individual component representation of vector <math> \vec{v} </math> in the x-direction. |
|||
⚫ | |||
:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math> |
:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math> |
||
The two-dimensional example of a vector in its components with the vector designations. |
|||
⚫ | |||
:<math> \ |
:<math> \vec{v} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math> |
||
This is the summation used to represent the vector <math> \vec{v} </math> as having as many dimensions as needed to express its full value: |
|||
⚫ | |||
:<math> \langle v_x, v_y\rangle</math> |
:<math> \langle v_x, v_y\rangle</math> |
||
This is the equation for finding the distance between the two vectors <math> \vec{u} </math> and <math> \vec{v} </math> who are separated by angle <math> \theta </math>. |
|||
:<math> \ |
:<math> \vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos\theta </math> |
||
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} (\mathbf{\hat{i}} \cdot \mathbf{\hat{i}}) + v_\mathrm{y} \mathbf{\hat{j}} \cdot \mathbf{\hat{i}} </math> |
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} (\mathbf{\hat{i}} \cdot \mathbf{\hat{i}}) + v_\mathrm{y} \mathbf{\hat{j}} \cdot \mathbf{\hat{i}} </math> |
||
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} </math> |
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} </math> |
||
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math> |
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math> |
||
:<math> \delta_\mathrm{i,m} |
:<math> \delta_\mathrm{i,m} \equiv \begin{cases} 1, & \mbox{if } i = m \\ 0, & \mbox{else} \end{cases}</math> |
||
==Example== |
|||
⚫ | |||
Given function: <math> x(t) = x(t+T) \,</math> |
|||
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math> |
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math> |
||
1) Use vector analogy |
1) Use vector analogy |
||
:<math> x(t) \cdot \sin \left( \frac {2\pi mt} {T} \right) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \cdot \sin \left( \frac {2\pi mt} {T} \right) \right] </math> |
:<math> x(t) \cdot \sin \left( \frac {2\pi mt} {T} \right) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \cdot \sin \left( \frac {2\pi mt} {T} \right) \right] </math> |
||
:<math> \int_{\frac {-T} {2}}^{\frac {T} {2}} x(t) \sin \left( \frac {2\pi mt} {T} \right) \,dt = v_m</math> |
:<math> \int_{\frac {-T} {2}}^{\frac {T} {2}} x(t) \sin \left( \frac {2\pi mt} {T} \right) \,dt = v_m</math> |
||
==External Links== |
==External Links== |
||
* |
*[http://people.wallawalla.edu/~Rob.Frohne/ClassNotes/ENGR351/2010w/Keystone/index.php Class Notes]. |
||
==Authors== |
==Authors== |
||
Line 38: | Line 42: | ||
Brian Roath |
Brian Roath |
||
==Read By== |
|||
==Reviewed By== |
|||
*[[Gratias, Ryan|Ryan Gratias]] |
Latest revision as of 11:37, 20 January 2010
This article covers the notes given in class on January 5, 2010.
Subjects Covered
1) Linear Systems
2) Functions as Vectors
The individual component representation of vector in the x-direction.
The two-dimensional example of a vector in its components with the vector designations.
This is the summation used to represent the vector as having as many dimensions as needed to express its full value:
This is the equation for finding the distance between the two vectors and who are separated by angle .
Example
Given function:
1) Use vector analogy
External Links
Authors
Colby Fullerton
Brian Roath