Laplace Transform of a Triangle Wave: Difference between revisions
Jump to navigation
Jump to search
Michaelvier (talk | contribs) |
Michaelvier (talk | contribs) No edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
[[Image:triangle wave.jpg|500px|thumb|right|Triangle wave with period T=2 and amplitude A=2]] |
[[Image:triangle wave.jpg|500px|thumb|right|Triangle wave with period T=2 and amplitude A=2]] |
||
'''This page is still in progress''' |
|||
==Introduction== |
|||
This article explains how to transform a periodic function (in this case a triangle wave). This is especially useful for analyzing circuits which contain triangle wave voltage sources. |
|||
==Define F(t)== |
|||
<math>m1=\frac{2+2}{.5+.5}=4</math> |
|||
<math>m2=\frac{-2-2}{1.5-.5}=-4</math> |
|||
So, |
|||
[[Image:definitionofF.jpg|140px|left]] |
|||
Using the theorem for the transform of a periodic function, |
|||
<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{\left( -4t+4.5 \right)e^{-st}dt} \right]</math> |
|||
<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{-4te^{-st}dt}+\int_{.5}^{1.5}{4.5e^{-st}dt} \right]</math> |
|||
<math>\int_{-.5}^{.5}{4te^{-st}}=\; \frac{4e^{.5s}-2se^{.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math> |
|||
<math>\int_{.5}^{1.5}{-4te^{-st}}=\frac{6se^{-1.5s}+4e^{-1.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math> |
|||
<math>\int_{.5}^{1.5}{4.5e^{-st}}=\frac{4.5se^{-.5s}-4.5se^{-1.5s}}{s^{2}}</math> |
|||
<math>F\left( s \right)=\frac{1}{1-e^{-2s}}\left( \frac{-8e^{-.5s}+4e^{.5s}+4e^{-1.5s}}{s^{2}}+\frac{.5e^{-.5s}-2e^{.5s}-1.5e^{-1.5s}}{s} \right)</math> |
|||
==Author== |
|||
*[[Vier, Michael|Michael Vier]] |
|||
==Reviewers== |
|||
==Readers== |
Latest revision as of 13:00, 25 January 2010
This page is still in progress
Introduction
This article explains how to transform a periodic function (in this case a triangle wave). This is especially useful for analyzing circuits which contain triangle wave voltage sources.
Define F(t)
So,
Using the theorem for the transform of a periodic function,