Laplace Transform of a Triangle Wave: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 28: Line 28:
<math>\int_{.5}^{1.5}{-4te^{-st}}=\frac{6se^{-1.5s}+4e^{-1.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math>
<math>\int_{.5}^{1.5}{-4te^{-st}}=\frac{6se^{-1.5s}+4e^{-1.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math>


<math>\int_{}^{}{4.5e^{-st}}=\; L\left\{ 4.5 \right\}=\frac{4.5}{s}</math>
<math>\int_{.5}^{1.5}{4.5e^{-st}}=\frac{4.5se^{-.5s}-4.5se^{-1.5s}}{s^{2}}</math>

<math>F\left( s \right)=\frac{1}{1-e^{-2s}}\left( \frac{-8e^{-.5s}+4e^{.5s}+4e^{-1.5s}}{s^{2}}+\frac{.5e^{-.5s}-2e^{.5s}-1.5e^{-1.5s}}{s} \right)</math>
==Author==
==Author==



Latest revision as of 13:00, 25 January 2010

Triangle wave with period T=2 and amplitude A=2

This page is still in progress

Introduction

This article explains how to transform a periodic function (in this case a triangle wave). This is especially useful for analyzing circuits which contain triangle wave voltage sources.

Define F(t)

So,

DefinitionofF.jpg



Using the theorem for the transform of a periodic function,

Author

Reviewers

Readers