Table of Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
(Created page with ' Scaling For a non-zero real number a, if h(x) = ƒ(ax), then  . The case a = −1 leads to the time-reversal property, which states: if h(x) = ƒ(−x), then  {| class=…')
 
No edit summary
 
(8 intermediate revisions by one other user not shown)
Line 1: Line 1:

Scaling
For a non-zero real number a, if h(x) = ƒ(ax), then  . The case a = −1 leads to the time-reversal property, which states: if h(x) = ƒ(−x), then 

{| class="wikitable" border="1"
{| class="wikitable" border="1"
|+ Fourier Transform Properties
|+ Fourier Transform Properties
Line 9: Line 5:
| Convolution ([[Ben Henry]]) || If <math>h(x)=\left(f*g\right)(x)</math>, becomes &thinsp; <math> \hat{h}(\xi)=\hat{f}(\xi)\cdot \hat{g}(\xi).</math>
| Convolution ([[Ben Henry]]) || If <math>h(x)=\left(f*g\right)(x)</math>, becomes &thinsp; <math> \hat{h}(\xi)=\hat{f}(\xi)\cdot \hat{g}(\xi).</math>
|-
|-
| Scaling ([[Christopher Garrison Lau I|Chris Lau]]) || For a non-zero [[real number]] ''a'', if ''h''(''x'')&nbsp;=&nbsp;''ƒ''(''ax''), then&thinsp; <math>\hat{h}(\xi)=\frac{1}{|a|}\hat{f}\left(\frac{\xi}{a}\right)</math>.&nbsp;&nbsp;&nbsp;&nbsp; The case ''a''&nbsp;=&nbsp;−1 leads to the ''time-reversal'' property, which states: if ''h''(''x'')&nbsp;=&nbsp;''ƒ''(−''x''), then&thinsp; <math>\hat{h}(\xi)=\hat{f}(-\xi)</math>.
| Scaling ([[Christopher Garrison Lau I|Chris Lau]]) || Given ''a'', which is non-zero and real, and <math>\ h(x)=f(ax) </math>, then <math>\hat{h}(\xi)=\frac{1}{|a|}\hat{f}\left(\frac{\xi}{a}\right)</math>. If ''a''=−1, then the time-reversal property states: if <math>\ h(x)=f(-x)</math>, then <math>\hat{h}(\xi)=\hat{f}(-\xi)</math>.
|-
| Linearity ([[Shepherd,Victor|Victor Shepherd]]) || <math>\mathcal{F}\{ax(t) + by(t)\} = a{F}\{x(t)\} + b{F}\{y(t)\}</math>
|}
|}

Latest revision as of 21:45, 1 December 2010

Fourier Transform Properties
Property (contributor) Expanation
Convolution (Ben Henry) If , becomes  
Scaling (Chris Lau) Given a, which is non-zero and real, and , then . If a=−1, then the time-reversal property states: if , then .
Linearity (Victor Shepherd)