Table of Fourier Transform Properties: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 5: | Line 5: | ||
| Convolution ([[Ben Henry]]) || If <math>h(x)=\left(f*g\right)(x)</math>, becomes   <math> \hat{h}(\xi)=\hat{f}(\xi)\cdot \hat{g}(\xi).</math> |
| Convolution ([[Ben Henry]]) || If <math>h(x)=\left(f*g\right)(x)</math>, becomes   <math> \hat{h}(\xi)=\hat{f}(\xi)\cdot \hat{g}(\xi).</math> |
||
|- |
|- |
||
| Scaling ([[Christopher Garrison Lau I|Chris Lau]]) || Given ''a'', which is non-zero and real, and <math>\ h(x)=f(ax) </math>, then <math>\hat{h}(\xi)=\frac{1}{|a|}\hat{f}\left(\frac{\xi}{a}\right)</math>. If ''a''=−1, then the time-reversal property states: if <math>\ h(x)= |
| Scaling ([[Christopher Garrison Lau I|Chris Lau]]) || Given ''a'', which is non-zero and real, and <math>\ h(x)=f(ax) </math>, then <math>\hat{h}(\xi)=\frac{1}{|a|}\hat{f}\left(\frac{\xi}{a}\right)</math>. If ''a''=−1, then the time-reversal property states: if <math>\ h(x)=f(-x)</math>, then <math>\hat{h}(\xi)=\hat{f}(-\xi)</math>. |
||
|- |
|||
| Linearity ([[Shepherd,Victor|Victor Shepherd]]) || <math>\mathcal{F}\{ax(t) + by(t)\} = a{F}\{x(t)\} + b{F}\{y(t)\}</math> |
|||
|} |
|} |
Latest revision as of 21:45, 1 December 2010
Property (contributor) | Expanation |
---|---|
Convolution (Ben Henry) | If , becomes |
Scaling (Chris Lau) | Given a, which is non-zero and real, and , then . If a=−1, then the time-reversal property states: if , then . |
Linearity (Victor Shepherd) |