Feedback and Control Systems: Difference between revisions
Jump to navigation
Jump to search
Created page with ' == Inverted Penululm Project ==' |
|||
Line 1: | Line 1: | ||
== Inverted Penululm Project == | == Inverted Penululm Project == | ||
% Double Pendulum Parameters | |||
% Run parameters | |||
%f = input('Control Frequency (Hz) = '); | |||
%crad = input('Pole Radius (1/s) = '); | |||
%psi = input('Spreading Angle (deg) = '); | |||
%eta = psi*pi/180; | |||
%obshift = input('Observer Shift = '); | |||
%Trun = input('Run Time (s) = '); | |||
f=130; | |||
crad=19; | |||
psi=10; | |||
eta=psi*pi/180; | |||
obshift=2; | |||
Trun=60; | |||
kmax = round(f*Trun); | |||
T = 1/f; | |||
Maxpos = 0.25; % Max carriage travel +- 0.25 m | |||
Maxangle = 0.175; % Max rod angle -- 10 deg | |||
Maxvoltage = 20; % Max motor voltage, V | |||
pstart = 0.005; % Carriage position starting limit, m | |||
astart = 1*pi/180; % Angle starting limit, rad | |||
g = 9.81; % m/s^2 Gravitational constant | |||
% SYSTEM PARAMETERS | |||
% Measured Mechanical Parameters | |||
d1 = 0.323; % m Length of pendulum 1 (long) | |||
d2 = 0.079; % m Length of pendulum 2 (short) | |||
%mp1 = 0.0208; % kg Mass of pendulum 1 | |||
mp1 = 0.0318; | |||
%mp2 = 0.0050; % kg Mass of pendulum 2 | |||
mp2 = 0.0085; | |||
m = 0.3163; % kg Mass of carriage | |||
rd = 0.0254/2; % m Drive pulley radius | |||
md = 0.0375; % kg Mass of drive pulley (cylinder) | |||
%mc1 = 0.0036; % kg Mass of clamp 1* | |||
%mc2 = 0.0036; % kg Mass of clamp 2* | |||
mc1 = 0.0085; | |||
mc2 = mc1; | |||
% *Clamp Dimensions | |||
% Rectangular 0.0254 x 0.01143 m | |||
% The pivot shaft is 0.00714 m from the end | |||
% Motor Parameters (Data Sheet) | |||
Im = 43e-7; % kg m^2/rad Rotor moment of inertia | |||
R = 4.09; % ohms Resistance | |||
kt = 0.0351; % Nm/A Torque constant | |||
ke = 0.0351; % Vs/rad Back emf constant | |||
% Derived Mechanical Parameters | |||
% kg m^2/rad Moment of inertia, clamp 1 | |||
%Ic1 = mc1*(0.01143^2 + 0.0254^2)/12 + mc1*(0.0127-0.00714)^2; | |||
Ic1 = mc1*(0.0098^2 + 0.0379^2)/12; | |||
Ic2 = Ic1; % kg m^2/rad Moment of inertia, clamp 2 | |||
Id = md*(rd^2)/2; % kg m^2/rad Moment of inertia, drive pulley | |||
Imd = Im + Id; % kg m^2/rad Moment of inertia, combined | |||
J1 = Ic1 + mp1*(d1^2)/3; % Total moment of inertia, pendulum 1 (long) | |||
J2 = Ic2 + mp2*(d2^2)/3; % Total moment of inertia, pendulum 2 (short) | |||
Jd = Im + Id; % Total moment of inertia, motor drive | |||
Mc = m + mc1 + mc2; % Total carriage mass | |||
% Friction Test Data | |||
% Carriage Slope = 19 deg; Terminal Velocity xdotss = 0.312 m/s; From | |||
% twincarriage.m; formula b = m g sin(theta)/xdotss | |||
% Pendulum 1 (long) Exponent a1 = 0.0756 1/s; From longfit.m | |||
% Pendulum 2 (short) Exponent a2 = 0.2922 1/s; From shortfit.m | |||
% formula b = 2 a J | |||
%alpha = 19; | |||
alpha = 12.2; | |||
%xdotss = 0.312; | |||
xdotss = 0.4852; | |||
%a1 = 0.0756; | |||
%a2 = 0.2922; | |||
a1 = 0.0185; | |||
a2 = 0.012; | |||
% Ns/m Viscous friction of carriage system | |||
b = (Mc + mp1 + mp2)*g*sin(alpha*pi/180)/xdotss; | |||
b1 = 2*a1*J1; % Nms/rad Viscous friction of pendulum 1 (rotational) | |||
b2 = 2*a2*J2; % Nms/rad Viscous friction of pendulum 2 (rotational) | |||
scale = [rd*2*pi/4096 2*pi/4096 -0.05/250]; | |||
T = 1/f; |
Revision as of 14:14, 7 February 2011
Inverted Penululm Project
% Double Pendulum Parameters % Run parameters %f = input('Control Frequency (Hz) = '); %crad = input('Pole Radius (1/s) = '); %psi = input('Spreading Angle (deg) = '); %eta = psi*pi/180; %obshift = input('Observer Shift = '); %Trun = input('Run Time (s) = '); f=130; crad=19; psi=10; eta=psi*pi/180; obshift=2; Trun=60; kmax = round(f*Trun); T = 1/f; Maxpos = 0.25; % Max carriage travel +- 0.25 m Maxangle = 0.175; % Max rod angle -- 10 deg Maxvoltage = 20; % Max motor voltage, V pstart = 0.005; % Carriage position starting limit, m astart = 1*pi/180; % Angle starting limit, rad g = 9.81; % m/s^2 Gravitational constant % SYSTEM PARAMETERS % Measured Mechanical Parameters d1 = 0.323; % m Length of pendulum 1 (long) d2 = 0.079; % m Length of pendulum 2 (short) %mp1 = 0.0208; % kg Mass of pendulum 1 mp1 = 0.0318; %mp2 = 0.0050; % kg Mass of pendulum 2 mp2 = 0.0085; m = 0.3163; % kg Mass of carriage rd = 0.0254/2; % m Drive pulley radius md = 0.0375; % kg Mass of drive pulley (cylinder) %mc1 = 0.0036; % kg Mass of clamp 1* %mc2 = 0.0036; % kg Mass of clamp 2* mc1 = 0.0085; mc2 = mc1; % *Clamp Dimensions % Rectangular 0.0254 x 0.01143 m % The pivot shaft is 0.00714 m from the end % Motor Parameters (Data Sheet) Im = 43e-7; % kg m^2/rad Rotor moment of inertia R = 4.09; % ohms Resistance kt = 0.0351; % Nm/A Torque constant ke = 0.0351; % Vs/rad Back emf constant % Derived Mechanical Parameters % kg m^2/rad Moment of inertia, clamp 1 %Ic1 = mc1*(0.01143^2 + 0.0254^2)/12 + mc1*(0.0127-0.00714)^2; Ic1 = mc1*(0.0098^2 + 0.0379^2)/12; Ic2 = Ic1; % kg m^2/rad Moment of inertia, clamp 2 Id = md*(rd^2)/2; % kg m^2/rad Moment of inertia, drive pulley Imd = Im + Id; % kg m^2/rad Moment of inertia, combined J1 = Ic1 + mp1*(d1^2)/3; % Total moment of inertia, pendulum 1 (long) J2 = Ic2 + mp2*(d2^2)/3; % Total moment of inertia, pendulum 2 (short) Jd = Im + Id; % Total moment of inertia, motor drive Mc = m + mc1 + mc2; % Total carriage mass % Friction Test Data % Carriage Slope = 19 deg; Terminal Velocity xdotss = 0.312 m/s; From % twincarriage.m; formula b = m g sin(theta)/xdotss % Pendulum 1 (long) Exponent a1 = 0.0756 1/s; From longfit.m % Pendulum 2 (short) Exponent a2 = 0.2922 1/s; From shortfit.m % formula b = 2 a J %alpha = 19; alpha = 12.2; %xdotss = 0.312; xdotss = 0.4852; %a1 = 0.0756; %a2 = 0.2922; a1 = 0.0185; a2 = 0.012; % Ns/m Viscous friction of carriage system b = (Mc + mp1 + mp2)*g*sin(alpha*pi/180)/xdotss; b1 = 2*a1*J1; % Nms/rad Viscous friction of pendulum 1 (rotational) b2 = 2*a2*J2; % Nms/rad Viscous friction of pendulum 2 (rotational) scale = [rd*2*pi/4096 2*pi/4096 -0.05/250]; T = 1/f;