Code Examples from Class: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 136: | Line 136: | ||
END |
END |
||
</nowiki> |
</nowiki> |
||
---- |
|||
* Compare Two Null Terminated Strings |
* Compare Two Null Terminated Strings |
||
Line 185: | Line 188: | ||
END |
END |
||
</nowiki> |
</nowiki> |
||
---- |
|||
* BCD Add |
* BCD Add |
||
<nowiki> |
<nowiki> |
Revision as of 16:55, 20 November 2013
- Factorial
; Factorial Calculation ; The answer is in R10 ; Rob Frohne 2013 GLOBAL Reset_Handler AREA Factorial, CODE, READONLY ENTRY Reset_Handler movs r8, #0 ; Take the factorial of this number, n. mov r10, #1 ; 0! and 1! are 1 beq stop ; If r8 is zero we are done cmp r8, #1 ; If r8 is 1, beq stop ; we are done subs r9, r8, #1 ; n-1 loop mulne r10, r9, r8 ; n(n-1) mov r8, r10 subs r9, r9, #1 bne loop stop b stop END
- 64 Bit Add
VAL1A EQU 0xffffffff VAL1B EQU 0x0000000f VAL2A EQU 0x00000001 VAL2B EQU 0x00000001 AREA LongAdd, CODE ENTRY ldr R0, = VAL1A ldr R1, = VAL1B ldr R2, = VAL2A ldr R3, = VAL2B adds R8,R0,R1 adcs R9,R1,R3 stop b stop END
- Copy to RAM
AREA Exaddress, CODE, READONLY EXPORT Reset_Handler Reset_Handler LDR R9, =list mov R7, #4 ; number in list ldr r6, =datastart loop ldr r8,[r9],#4 str r8,[r6],#4 subs r7,r7,#1 bne loop stop b stop ALIGN list DCW 0x1111, 0x2222, 0x3333, 0x4444, 0x5555 ALIGN string DCB "This is a test.",0 ; This string is not used in the copy to ram program string2 DCB 'T','h','i' ; This string2 is not used in the copy to ram program ALIGN AREA Thedata, DATA, NOINIT, READWRITE datastart SPACE 20 END
- Subroutine Example1
; First Subroutine Example ; This program demonstrates using a subroutine, ; saving registers on the stack, etc. ; Rob Frohne, 1/3/2013 stack_start EQU 0x40001000 AREA Subroutine_Example, CODE ENTRY Start ldr sp, =stack_start ; Tell where we will place the stack. ; (It goes down (lower addresses from here.) mov r1, #1 ; Store some numebers in some registers mov r2, #2 mov r3, #3 bl subroutine stop b stop ; This subroutine saves the registers, ; messes up the registers locally, ; then restores the registers and returns. subroutine stmfd sp!, {r1-r2,lr} ; save used registers and the link register (r14) mov r1,#0xffffffff ; mess up the registers mov r2, r1 ldmfd sp!, {r1,r2,pc} ; pop the stack and return END
- Minimum of a Signed Number
; This program finds the minimum of a list of constant words in signed format ; The result is in r3 at the end of the routine. ; Rob Frohne 10/30/2013 AREA Program, CODE, READONLY ENTRY ldr r0,=end ; load the beginning address of the code & initialize it as the pointer. ldr r2,=begin ; load the ending address of the code. mov r3,#0x7fffffff ; Initialize r3 as the most positive number. loop ldr r6,[r2],#4 ; load the next data into r6 and post increment r2 for the next data. cmp r6,r3 ; Find out if r6 > r3. result from r6-r3 like subs r7,r6,r3 without r6 necessary. bgt no_update ; If it is no update. mov r3,r6 ; update if r6 is lower than r3. no_update cmp r0,r2 ; are we at the end yet bne loop ; if r7 != 0 then keep looping stop b stop ALIGN begin DCD 0x8fffffff, 0x55555555, 0x44444444, 0x77777777, 0xffffffff end END
- Compare Two Null Terminated Strings
; Subroutine to compare two null terminated ASCII strings. ; The address where the two strings start are in r0 and r1 ; The return is in r0, 1 for match and 0 for don't match. ; If they don't match, r1 gives the number of the first ; character that didn't match, starting with 0. ; r2 and r3 are not protected. ; Rob Frohne 11/6/2013 stack_start EQU 0x40001000 AREA String_Compare, CODE ENTRY Start ldr sp, =stack_start ; Tell where we will place the stack. ; (It goes down (lower addresses from here.) ldr r0, =string1 ldr r1, =string2 bl compare_strings stop b stop compare_strings stmfd sp!, {r2,r4,r5,lr} ; save used registers and the link register (r14) mov r2, #0 ; Initialize the counter for the first position. loop ldrb r4,[r0],#1 ldrb r5,[r1],#1 cmp r5,r4 bne do_not_match cmp r4, #0 ; check for end of string. beq match add r2, #1 b loop do_not_match mov r0, #0 ; don't match b finish match mov r0, #1 finish mov r1,r2 ; Move the count into the result register. ldmfd sp!, {r2,r4,r5,pc} ; pop the stack and return string1 DCB "This is the first string.",00 ; For testing purposes. ALIGN string2 DCB "This is the first string.",00 ALIGN END
- BCD Add
; Subroutine to add two BCD numbers in 32 bit form with each nibble ; representing a digit. ; locals: r8 for digit counter, mask 0xf, r5 & r6 for masked addends, ; working BCD_carry, r7 for ; working result in r4 ; the summed digits go in r3 ; inputs: r0+r1 ; outupts: r0 result and r1 carry ; only r4-r8 are saved. ; Rob Frohne 11/12/13 stack_start EQU 0x40001000 AREA ADD_BCD, CODE ENTRY Start ldr sp, =stack_start ; Tell where we will place the stack. ; (It goes down (lower addresses from here.) ldr r0, =0x12345678 ; The two numbers to add. ldr r1, =0x87654321 bl bcd_add stop b stop bcd_add ; The subroutine stmfd sp!, {r4-r8,lr} mov r8, #8 ; Set the counter to move through the eight digits mov r7, #0 ; Set the carry to zero to start with mov r3, #0 ; This is where the resulting digits of the sum are stored. loop and r5, r0, #0xf ; mask for the rightmost digit. and r6, r1, #0xf add r4, r5, r7 ; add carry add r4, r4, r6 ; r4=r5+r6 subs r4, r4, #10 ; Subtract 10 (base 10) to see if there is a carry. bmi no_carry mov r7, #1 ; set the carry b roll_to_next_digit no_carry mov r7, #0 ; set carry to zero add r4, r4, #10 ; Add the 10 back in as there was no carry needed. roll_to_next_digit orr r3, r3, r4 ; Add thise digits into the sum. ror r0, #4 ror r1, #4 ror r3, #4 subs r8, r8, #1 ; Decrement digit counter bne loop ; If it isn't zero do the next digit. mov r0, r3 ; Set the output registers. r0 is result. r1 is carry. mov r1, r7 ldmfd sp!, {r4-r8,pc} END
- GPIO Example
;--------------------------------------------------------------------------- ; ; Programmer : Larry Aamodt ; ; File name : shell_2148.s ; Class : CPTR-215 ; Language : ARM assembly ; Assembler : Keil ; Target MCU : NXP LPC-2148 on Embedded Artists board ; Date Written: 11/30/09 ; change history: 11/30/09 LDA Updated with hardware start-up ; 12/03/09 LDA PWM register definitions added ; Description : ; ; Inputs : ; ; Outputs : ; ; Special : ; requirements ; ; ; NOTES: ; ; ; ;--------------------------------------------------------------------------- ; Put application program definitions (i.e. equates) here: ; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs Mode_USR EQU 0x10 Mode_FIQ EQU 0x11 Mode_IRQ EQU 0x12 Mode_SVC EQU 0x13 Mode_ABT EQU 0x17 Mode_UND EQU 0x1B Mode_SYS EQU 0x1F I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled ; Memory addresses for standard GPIO definitions IO0PIN EQU 0xE0028000 IO0SET EQU 0xE0028004 IO0DIR EQU 0xE0028008 IO0CLR EQU 0xE002800C ; Memory addresses for Pulse Width Modulation (PWM) PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) PWM_PCR EQU 0xE001404C ; PWM_CR Control Register PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 ; Stack size definitions UND_Stack_Size EQU 0x00000000 SVC_Stack_Size EQU 0x00000008 ABT_Stack_Size EQU 0x00000000 FIQ_Stack_Size EQU 0x00000000 IRQ_Stack_Size EQU 0x00000080 USR_Stack_Size EQU 0x00000400 ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ FIQ_Stack_Size + IRQ_Stack_Size) AREA STACK, NOINIT, READWRITE, ALIGN=3 Stack_Mem SPACE USR_Stack_Size __initial_sp SPACE ISR_Stack_Size Stack_Top ; Area Definition and Entry Point ; Startup Code must be linked first at Address at which it expects to run. AREA RESET, CODE, READONLY ARM ; Exception Vectors ; Mapped to Address 0. ; Absolute addressing mode must be used. ; Dummy Handlers are implemented as infinite loops which can be modified. Vectors LDR PC, Reset_Addr LDR PC, Undef_Addr LDR PC, SWI_Addr LDR PC, PAbt_Addr LDR PC, DAbt_Addr NOP ; Reserved Vector ; LDR PC, IRQ_Addr LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr LDR PC, FIQ_Addr Reset_Addr DCD Reset_Handler Undef_Addr DCD Undef_Handler SWI_Addr DCD SWI_Handler PAbt_Addr DCD PAbt_Handler DAbt_Addr DCD DAbt_Handler DCD 0 ; Reserved Address IRQ_Addr DCD IRQ_Handler FIQ_Addr DCD FIQ_Handler Undef_Handler B Undef_Handler SWI_Handler B SWI_Handler PAbt_Handler B PAbt_Handler DAbt_Handler B DAbt_Handler IRQ_Handler B IRQ_Handler FIQ_Handler B FIQ_Handler ; Reset Handler EXPORT Reset_Handler Reset_Handler ; Setup Stack for each mode LDR R0, =Stack_Top ; Enter Undefined Instruction Mode and set its Stack Pointer MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #UND_Stack_Size ; Enter Abort Mode and set its Stack Pointer MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #ABT_Stack_Size ; Enter FIQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #FIQ_Stack_Size ; Enter IRQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #IRQ_Stack_Size ; Enter Supervisor Mode and set its Stack Pointer MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #SVC_Stack_Size ; Enter User Mode and set its Stack Pointer MSR CPSR_c, #Mode_USR MOV SP, R0 SUB SL, SP, #USR_Stack_Size ; User program code goes here main ldr sp, = Stack_Mem ; load stack pointer ldr r1, =PINSEL0 mov r0, #0 ; set P0.0 to P0.15 as GPIO str r0,[r1] ldr r1, =IO0DIR ; Get ready to set direction of data ldr r0, =0xffff ; output str r0, [r1] ; set the direction ldr r1, =IO0PIN ; load the address of the port0 mov r0, #0 next str r0, [r1] add r0, r0, #1 ldr r2, =0x200 delay subs r2,r2,#1 bne delay b next AREA Thedata, DATA, READWRITE ALIGN datastart EQU 0x40000004 SPACE 20 ;FILL 20, 0xff ; Why is this stored at 0x50 instead of 0x58? ; Or maybe a better question: How do I set data at ; a specific memory location? END <\nowiki> ---- * LCD Example <nowiki> ;--------------------------------------------------------------------------- ; ; Programmer : Larry Aamodt ; ; File name : shell_2148.s ; Class : CPTR-215 ; Language : ARM assembly ; Assembler : Keil ; Target MCU : NXP LPC-2148 on Embedded Artists board ; Date Written: 11/30/09 ; change history: 11/30/09 LDA Updated with hardware start-up ; 12/03/09 LDA PWM register definitions added ; Description : ; ; Inputs : ; ; Outputs : ; ; Special : ; requirements ; ; ; NOTES: ; ; ; ;--------------------------------------------------------------------------- ; Put application program definitions (i.e. equates) here: ; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs Mode_USR EQU 0x10 Mode_FIQ EQU 0x11 Mode_IRQ EQU 0x12 Mode_SVC EQU 0x13 Mode_ABT EQU 0x17 Mode_UND EQU 0x1B Mode_SYS EQU 0x1F I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled ; Memory addresses for standard GPIO definitions IO0PIN EQU 0xE0028000 IO0SET EQU 0xE0028004 IO0DIR EQU 0xE0028008 IO0CLR EQU 0xE002800C ; Memory addresses for Pulse Width Modulation (PWM) PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) PWM_PCR EQU 0xE001404C ; PWM_CR Control Register PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 ; Stack size definitions UND_Stack_Size EQU 0x00000000 SVC_Stack_Size EQU 0x00000008 ABT_Stack_Size EQU 0x00000000 FIQ_Stack_Size EQU 0x00000000 IRQ_Stack_Size EQU 0x00000080 USR_Stack_Size EQU 0x00000400 ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ FIQ_Stack_Size + IRQ_Stack_Size) AREA STACK, NOINIT, READWRITE, ALIGN=3 Stack_Mem SPACE USR_Stack_Size __initial_sp SPACE ISR_Stack_Size Stack_Top ; Area Definition and Entry Point ; Startup Code must be linked first at Address at which it expects to run. AREA RESET, CODE, READONLY ARM ; Exception Vectors ; Mapped to Address 0. ; Absolute addressing mode must be used. ; Dummy Handlers are implemented as infinite loops which can be modified. Vectors LDR PC, Reset_Addr LDR PC, Undef_Addr LDR PC, SWI_Addr LDR PC, PAbt_Addr LDR PC, DAbt_Addr NOP ; Reserved Vector ; LDR PC, IRQ_Addr LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr LDR PC, FIQ_Addr Reset_Addr DCD Reset_Handler Undef_Addr DCD Undef_Handler SWI_Addr DCD SWI_Handler PAbt_Addr DCD PAbt_Handler DAbt_Addr DCD DAbt_Handler DCD 0 ; Reserved Address IRQ_Addr DCD IRQ_Handler FIQ_Addr DCD FIQ_Handler Undef_Handler B Undef_Handler SWI_Handler B SWI_Handler PAbt_Handler B PAbt_Handler DAbt_Handler B DAbt_Handler IRQ_Handler B IRQ_Handler FIQ_Handler B FIQ_Handler ; Reset Handler EXPORT Reset_Handler Reset_Handler ; Setup Stack for each mode LDR R0, =Stack_Top ; Enter Undefined Instruction Mode and set its Stack Pointer MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #UND_Stack_Size ; Enter Abort Mode and set its Stack Pointer MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #ABT_Stack_Size ; Enter FIQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #FIQ_Stack_Size ; Enter IRQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #IRQ_Stack_Size ; Enter Supervisor Mode and set its Stack Pointer MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #SVC_Stack_Size ; Enter User Mode and set its Stack Pointer MSR CPSR_c, #Mode_USR MOV SP, R0 SUB SL, SP, #USR_Stack_Size ; User program code goes here main bl lcdReset ; set up the lcd bl lcdClear mov r0, #32 loop bl lcdWRdata ; write to the LCD add r0, r0, #1 ; increment the data mov r9, r0 ldr r0, =1000000 bl delay mov r0, r9 b loop ; User data area definition follows AREA appdata, DATA, NOINIT, READWRITE ;----------------------------------------------------------------------------- ; Copyright (C) 2012 .... ; ; Programmer : Larry Aamodt ; ; File name : lcd_routines.asm ; Language : ARM assembly ; Assembler ; Keil ; Target MCU : NXP LPC2148 on Embedded Artists education board ; Date : 12/05/12 LDA lcd_routines.asm. debugged ; ; Description : LCD display routines ; Copy this code to your own program ; ; Procedures you can call are: ; lcdReset must be called first. no parameters. ; lcdClear use to clear the display & home the cursor ; no parameters are required. ; lcdWRdata use to write one character on the display ; place an ASCII char in r0 before calling. ; The cursor will advance. ; lcdCursorAt use to move the cursor. Two parameters ; r0 = row (1 or 2) ; r1 = column to move cursor to (0-15) ; ; Example use of the LCD routines: ; bl lcdReset ; do this once at the top of your program ; ; mov r0,#31h ; place the ascii code for number one in r0 ; bl lcdWRdata ; display the character '1' on LCD display ; ; bl lcdClear ; clear the display ; ; mov r0,#1 ; select LCD row 1 ; mov r1,#4 ; select LCD column 4 ; bl lcdCursorAt ; move the cursor ; ; ; NOTE: All registers are saved by these routines, i.e. upon return ; from the subroutine all registers, except flags, have the ; same value in them as before the subroutine was called (this ; breaks with the ARM convention for subroutines but is done ; to make it easier for you). ; ;----------------------------------------------------------------------------- AREA lcdroutines,CODE,READONLY EXPORT lcdReset EXPORT lcdClear EXPORT lcdWRdata EXPORT lcdCursorAt EXPORT delay ; ----------------------------------------------------------------------------- ; LCD Procedures follow. ;------------------------------------------------------------------------------ ; ***** LCD equates ****** ;IO0PIN EQU 0xE0028000 ;IO0SET EQU 0xE0028004 ;IO0DIR EQU 0xE0028008 ;IO0CLR EQU 0xE002800C IO1PIN EQU 0xE0028010 IO1SET EQU 0xE0028014 IO1DIR EQU 0xE0028018 IO1CLR EQU 0xE002801C T0_TCR_ADDR EQU 0xE0004004 T0_PR_ADDR EQU 0xE000400C T0_MCR_ADDR EQU 0xE0004014 T0_MR0_ADDR EQU 0xE0004018 ; ----------------------------------------------------------------------------- ; Procedure lcdReset Must be called before writing to the LCD ; No parameters required ; ----------------------------------------------------------------------------- lcdReset STMFD SP!,{LR,r0,r1,r2,r3,r4,r5,r6,r7,r8,r9} LDR r1,=T0_PR_ADDR ; Prescale register MOV r2,#2 ; prescale count value STR r2,[r1] ; Prescaler will divide by 3 LDR r1,=T0_MCR_ADDR ; Match control register MOV r2,#0x6 ; bit 2 = one STR r2,[r1] ; stop counter when match reached LDR r5,=IO0CLR LDR r6,=IO0SET LDR r7,=IO1CLR LDR r8,=IO1SET LDR r0,=35000 BL delay ; delay 35ms LDR r0,=IO0DIR LDR r4,[r0] ; read current Port 0 direction bits LDR r3,=0x40408000 ; one's for pins to be set for output ORR r4,r4,r3 ; bits 22 & 30 to be outputs STR r4,[r0] ; set lcd port bits to output LDR r3,=0x00400000 ; STR r3,[r5] ; write 0 to LCD R/W signal LDR r3,=0x40008000 STR r3,[r6] ; turn on backlight - write 1 to P0.30 LDR r0,=IO1DIR LDR r4,[r0] ; read current Port 1 direction bits LDR r3,=0x03FF0000 ; one's for lcd pins - set for output ORR r4,r4,r3 ; bits 16 to 25 to be outputs STR r4,[r0] ; set lcd port direction bits to output STR r3,[r7] ; clear the LCD data & control bits LDR r9,=0x02000000 ; bit pattern to turn on/off E LDR r2,=0x00380000 ; function: 2 lines, 5x7 dots STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#40 BL delay ; wait 40 microseconds LDR r2,=0x000E0000 ; function: display on, cursor on STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#40 BL delay ; wait 40 microseconds LDR r2,=0x00010000 ; lcd function: clear display STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#1600 BL delay ; delay for 1600 microseconds LDR r2,=0x00030000 ; lcd function: set entry mode STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits end_lcdReset LDMFD SP!,{PC,r0,r1,r2,r3,r4,r5,r6,r7,r8,r9} ;------------------------------------------------------------------------------ ; Procedure pulse_e uses r0. Not interuptable (r14 not saved) ; assumes r9 has 0x02000000 in it ; assumes r7 has IO1CLR address in it ; assumes r8 has IO1SET address in it ;------------------------------------------------------------------------------ pulse_e MOV r0,#4 STR r9,[r8] ; assert E ploop1 SUBS r0,r0,#1 ; delay 600ns or so BNE ploop1 STR r9,[r7] ; de-assert E MOV r0,#8 ploop2 SUBS r0,r0,#1 ; delay 1100ns or so BNE ploop2 end_pulse_e BX LR ; ----------------------------------------------------------------------------- ; Procedure lcdClear Clears the LCD and positions cursor to line1, left col ; no parameters required ; ----------------------------------------------------------------------------- lcdClear STMFD SP!,{LR,r0,r1,r2,r3,r7,r8,r9} LDR r9,=0x02000000 ; bit pattern to turn on/off E LDR r3,=0x03FF0000 ; one's for pins used for lcd LDR r7,=IO1CLR LDR r8,=IO1SET LDR r2,=0x00010000 ; lcd function: clear display STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#1600 BL delay end_lcdClear LDMFD SP!,{PC,r0,r1,r2,r3,r7,r8,r9} ; ----------------------------------------------------------------------------- ; Procedure lcdCursorAt ; r0 assumed to contain the row# (1 or 2) ; r1 assumed to contain col#(0-15) ; No cursor movement if invalid row or col # is found ; ----------------------------------------------------------------------------- lcdCursorAt STMFD SP!,{LR,r0,r1,r2,r3,r7,r8,r9} CMP r1,#15 ; check column & row range BHI end_lcdCursorAt CMP r0,#0 BEQ end_lcdCursorAt CMP r0,#2 BHI end_lcdCursorAt ADDEQ r1,r1,#0x40 ; build the cursor address LDR r0,=0x00800000 ORR r2,r0,r1,LSL #16 ; r2 now has the address LDR r3,=0x03FF0000 ; one's for pins used for lcd LDR r7,=IO1CLR LDR r8,=IO1SET LDR r9,=0x02000000 ; bit pattern to turn on/off E STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#40 BL delay end_lcdCursorAt LDMFD SP!,{PC,r0,r1,r2,r3,r7,r8,r9} ; ----------------------------------------------------------------------------- ; Procedure lcdWRdata Writes data (an ASCII character) to the ; current cursor position on the LCD ; r0 is assumed to contain the character to send ; ----------------------------------------------------------------------------- lcdWRdata STMFD SP!,{LR,r0,r1,r2,r3,r7,r8,r9} LDR r9,=0x02000000 ; bit pattern to turn on/off E LDR r3,=0x03FF0000 ; one's for pins used for lcd LDR r7,=IO1CLR LDR r8,=IO1SET AND r0,r0,#0xFF ; make sure only 8 bits are non-zero ORR r0,r0,#0x100 ; set bit that indicates writing LSL r0,r0,#16 STR r0,[r8] ; write data BL pulse_e STR r3,[r7] ; clear lcd bits end_lcdWRData LDMFD SP!,{PC,r0,r1,r2,r3,r7,r8,r9} ; ----------------------------------------------------------------------------- ; Procedure delay microsecond delay using timer 0 ; (12Mhz clock & VPB divide by 4 assumed) ; reg R0 must contain a delay value in uS ; Not interruptable (r14 not saved) ; assumes lcdReset has been called prior to delay ; r0, r1 not preserved ; ----------------------------------------------------------------------------- delay LDR r1,=T0_MR0_ADDR ; Match register zero STR r0,[r1] ; load match count per R0 ; ldr r0,=0x8000 ; str r0,[r5] ; turn on p0.15 led LDR r1,=T0_TCR_ADDR ; Timer 0 Control Register MOV r0,#2 ; bit 1 = one STR r0,[r1] ; Clear counter & prescaler MOV r0,#0 STR r0,[r1] MOV r0,#1 ; bit 0 = one STR r0,[r1] ; Turn on counter dloop LDR r0,[r1] ; Read TCR register ANDS r0,r0,#1 BNE dloop ; ldr r0,=0x8000 ; str r0,[r6] ; turn off p0.15 led end_delay BX LR ; Return END