Digital Control Systems: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 18: Line 18:
****[http://www.jhu.edu/signals/discreteconv2/index.html This one lets you try several functions.]
****[http://www.jhu.edu/signals/discreteconv2/index.html This one lets you try several functions.]
****[http://www.cse.yorku.ca/~asif/spc/ConvolutionSum_Final3.swf This one shows what happens if your signals happen prior to time zero.]
****[http://www.cse.yorku.ca/~asif/spc/ConvolutionSum_Final3.swf This one shows what happens if your signals happen prior to time zero.]
**Notice that this becomes the same as [http://www.mathworks.com/help/matlab/ref/conv.html Polynomial Multiplication].
**Notice that this is really the same as [http://www.mathworks.com/help/matlab/ref/conv.html Polynomial Multiplication].

Revision as of 13:42, 8 April 2014

Links

MATLAB/Octave

Z Transforms

  • Relationship between the Laplace and Z transforms
  • Convolution and Z Transforms
    • Z Transforms and Convolution
    • Here is an animation of discrete convolution. To convolve with , you flip shift into on the axis, then you multiply it by to get , then you integrate with respect to , so that the convolution is: . The animation shows this happening with sampled waveforms: and .
    • Notice that this is really the same as Polynomial Multiplication.