Fourier transform: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
<br><br> | <br><br> | ||
Now let's make a periodic function <math> \gamma(t) </math> by repeating <math> \beta(t) </math> with a fundamental period <math> T_\zeta </math>. | Now let's make a periodic function <math> \gamma(t) </math> by repeating <math> \beta(t) </math> with a fundamental period <math> T_\zeta </math>. | ||
Note that <math> \lim_{T_\zeta \to \infty}\gamma(t)=\beta(t) </math> | |||
<br> | <br> | ||
The Fourier Series representation of <math> \gamma(t) </math> is | The Fourier Series representation of <math> \gamma(t) </math> is | ||
<br> | <br> | ||
<math> \gamma(t)=\sum_{k=-\infty}^\infty \alpha_k e^{j2\pi fkt} </math> where <math> f={1\over T_\ | <math> \gamma(t)=\sum_{k=-\infty}^\infty \alpha_k e^{j2\pi fkt} </math> where <math> f={1\over T_\zeta} | ||
</math> <br>and <math> \alpha_k={1\over T_\ | </math> <br>and <math> \alpha_k={1\over T_\zeta}\int_{-{T_\zeta\over 2}}^{{T_\zeta\over 2}} \gamma(t) e^{-j2\pi kt}\,dt</math> | ||
<br> | |||
<math> \alpha_k </math> can now be rewritten as <math> \alpha_k={1\over T_\zeta}\int_{-\infty}^{\infty} \beta(t) e^{-j2\pi kt}\,dt </math> | |||
<br>From our initial identity then, we can write <math> \alpha_k </math> as | |||
<math> | |||
\alpha_k={1\over T_\zeta}\Beta(kf) | |||
</math> | |||
<br> and | |||
<math> | |||
\gamma(t) | |||
</math> | |||
becomes | |||
<math> | |||
\gamma(t)=\sum_{k=-\infty}^\infty {1\over T_\zeta}\Beta(kf) e^{j2\pi fkt} | |||
</math> |
Revision as of 10:02, 8 December 2004
An initially identity that is useful:
Suppose that we have some function, say , that is nonperiodic and finite in duration.
This means that for some
Now let's make a periodic function by repeating with a fundamental period .
Note that
The Fourier Series representation of is
where
and
can now be rewritten as
From our initial identity then, we can write as
and
becomes