Linear Time Invarient System: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 12: Line 12:
for any scalar values of A and B.
for any scalar values of A and B.


Time invarience of a system means that for adjust any input <math>x(t)</math> by some amout of time T the out put will also be adjusted by that amount of time. This impies that for,
Time invarience of a system means that for any input <math>x(t)</math> by some amout of time T the out put will also be adjusted by that amount of time. This implies that for,


::<math>x(t - T)</math>
::<math>x(t - T)</math>

Revision as of 13:35, 8 October 2006

LTI systems

LTI System theory is a powerful and widely used concept in electrical engineering. It has applictions in circuit anlysis, control theory , and our main topic of interest signal processing.

LTI system properties

A system is considered to be a Linear Time Invarient when it satifies the two basic criteria implied in its name, one it must be linear and two it must be time invarient. A Linear system is charterized by two propeties superposition (additvity) and scaling (homegeneity). The superpostion principal says that for any linear system a linear combination of solutions to the system is also a solution to the same linear system. The principal of scaling implies that if you adjust your scale an input by N amount, your output will also be adjusted by N amount. An example of a Linear system then would be,

for any scalar values of A and B.

Time invarience of a system means that for any input by some amout of time T the out put will also be adjusted by that amount of time. This implies that for,