Signals and systems/GF Fourier: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
Remember that <math>e^{j \theta} = cos \theta + j sin \theta \, </math>
Remember that <math>e^{j \theta} = cos \theta + j sin \theta \, </math>


The exponential form of the Fourier series is defined as <math> x(t) = \sum_{n=-\infty}^\infty \alpha_n e^{{j2\pi nt}/T} </math>
The exponential form of the Fourier series is defined as <math> x(t) = \sum_{n=-\infty}^\infty \alpha_n e^{{j2\pi nt}/T} \, </math>

Revision as of 21:14, 28 October 2006

The Fourier series is used to analyze arbitrary periodic functions by showing them as a composite of sines and cosines.

A function is considered periodic if for .

Remember that

The exponential form of the Fourier series is defined as