Signals and systems/GF Fourier: Difference between revisions
Jump to navigation
Jump to search
Line 14: | Line 14: | ||
<math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi nt}/T}e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi (n-m)t}/T} dt</math> Multiply by the complex conjugate |
<math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi nt}/T}e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi (n-m)t}/T} dt</math> Multiply by the complex conjugate |
||
<math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \frac{Te^{{j2\pi (n-m)t}/T}}{{j2\pi (n-m)}} \bigg|_{-T/2}^{T/2} </math> |
<math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \frac{Te^{{j2\pi (n-m)t}/T}}{{j2\pi (n-m)}} \bigg|_{-T/2}^{T/2} = T\frac{e^{j\pi(n-m)}-e^{-j\pi(n-m)}}{j2\pi(n-m)} = T \frac{\sin\pi(n-m)}{\pi(n-m)} = \begin{cases} T, n=m \\ 0, n\ne m \end{cases}</math> Using L'Hopitals to evaluate the <math>\frac{T\cdot 0}{0}</math> case. Note that n & m are integers |
||
== <math> \left \langle Bra \mid Ket \right \rangle </math> Notation == |
== <math> \left \langle Bra \mid Ket \right \rangle </math> Notation == |
Revision as of 21:07, 29 October 2006
Fourier series
The Fourier series is used to analyze arbitrary periodic functions by showing them as a composite of sines and cosines.
A function is considered periodic if for .
The exponential form of the Fourier series is defined as
Determining the coefficient
The definition of the Fourier series
Integrating both sides for one period. The range of integration is arbitrary, but using scales nicely when extending the Fourier series to a non-periodic function
Multiply by the complex conjugate
Using L'Hopitals to evaluate the case. Note that n & m are integers
Notation
Linear Time Invariant Systems
Changing Basis Functions
Identities