Fourier series - by Ray Betz: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 7: | Line 7: | ||
<math> \bold x(t) = \sum_{k=-\infty}^\infty \alpha_k e^ \frac {j 2 \pi k t}{T}</math> |
<math> \bold x(t) = \sum_{k=-\infty}^\infty \alpha_k e^ \frac {j 2 \pi k t}{T}</math> |
||
</center> |
</center> |
||
The above equation is called the complex fourier series. Given <math>x(t)</math>, we may determine <math> \alpha_k </math> by taking the [[inner product]] of <math> |
The above equation is called the complex fourier series. Given <math>x(t)</math>, we may determine <math> \alpha_k </math> by taking the [[inner product]] of <math>\alpha_k</math> with <math>x(t)</math>. |
||
Let us assume a solution for <math>\alpha_k</math> of the form <math>e^ \frac {j 2 \pi n t}{T}</math>. Now we take the inner product of <math>\alpha_k</math> with <math>x(t)</math>. |
|||
<math> <\alpha_k|x(t)> = <e^ \frac {j 2 \pi n t}{T}|\sum_{k=-\infty}^\infty \alpha_k e^ \frac {j 2 \pi k t}{T}> </math> |
|||
<math>= \int_{-\frac{T}{2}}^\frac{T}{2} x(t)e^ \frac {-j 2 \pi n t}{T} dt </math> |
|||
<math>= \int_{-\frac{T}{2}}^\frac{T}{2} \sum_{k=-\infty}^\infty \alpha_k e^ \frac {j 2 \pi k t}{T}e^ \frac {-j 2 \pi n t}{T} dt </math> |
|||
<math>= \sum_{k=-\infty}^\infty \alpha_k \int_{-\frac{T}{2}}^\frac{T}{2} e^ \frac {j 2 \pi (k-n) t}{T} dt </math> |
|||
If <math>k=n</math> then, |
|||
<math> \sum_{k=-\infty}^\infty \alpha_k \int_{-\frac{T}{2}}^\frac{T}{2} e^ \frac {j 2 \pi (k-n) t}{T} dt = \int_{-\frac{T}{2}}^\frac{T}{2} 1 dt = T</math> |
|||
If <math>k \ne; n </math> then, |
|||
<math> \sum_{k=-\infty}^\infty \alpha_k \int_{-\frac{T}{2}}^\frac{T}{2} e^ \frac {j 2 \pi (k-n) t}{T} dt = 0 </math> |
|||
So, we can simplify the above two conclusion into one equation. |
|||
<math> \sum_{k=-\infty}^\infty \alpha_k \int_{-\frac{T}{2}}^\frac{T}{2} e^ \frac {j 2 \pi (k-n) t}{T} dt = \sum_{k=-\infty}^\infty T \delta_{k,n} \alpha_k = T \alpha_n </math> |
Revision as of 15:59, 13 October 2005
Fourier Series
If
- Dirichlet conditions satisfied
then we can write
The above equation is called the complex fourier series. Given , we may determine by taking the inner product of with . Let us assume a solution for of the form . Now we take the inner product of with .
If then,
If then,
So, we can simplify the above two conclusion into one equation.