Fourier series - by Ray Betz: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 22: Line 22:
<math> \sum_{k=-\infty}^\infty \alpha_k \int_{-\frac{T}{2}}^\frac{T}{2} e^ \frac {j 2 \pi (k-n) t}{T} dt = 0 </math>
<math> \sum_{k=-\infty}^\infty \alpha_k \int_{-\frac{T}{2}}^\frac{T}{2} e^ \frac {j 2 \pi (k-n) t}{T} dt = 0 </math>


So, we can simplify the above two conclusion into one equation.
We can simplify the above two conclusion into one equation.


<math> \sum_{k=-\infty}^\infty \alpha_k \int_{-\frac{T}{2}}^\frac{T}{2} e^ \frac {j 2 \pi (k-n) t}{T} dt = \sum_{k=-\infty}^\infty T \delta_{k,n} \alpha_k = T \alpha_n </math>
<math> \sum_{k=-\infty}^\infty \alpha_k \int_{-\frac{T}{2}}^\frac{T}{2} e^ \frac {j 2 \pi (k-n) t}{T} dt = \sum_{k=-\infty}^\infty T \delta_{k,n} \alpha_k = T \alpha_n </math>

So, we may conclude
<math>\alpha_n = \frac{1}{T}\int_{-\frac{T}{2}}^\frac{T}{2} x(t) e^ \frac {-j 2 \pi n t}{T} dt </math>

==Orthogonal Functions==

Revision as of 10:11, 16 October 2005

Fourier Series

If

  1. Dirichlet conditions satisfied

then we can write

The above equation is called the complex fourier series. Given , we may determine by taking the inner product of with . Let us assume a solution for of the form . Now we take the inner product of with .

If then,

If then,

We can simplify the above two conclusion into one equation.

So, we may conclude

Orthogonal Functions