DFT Exploration by harrde: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
Here is the MATLAB code and resulting figures: | |||
<pre> | |||
f = 3; % Sampling freq. | |||
T = 1/f; % Sampling period | |||
t = 0:.01:5; | |||
N2 = 500; % Number of sampling points | |||
N3 = 30; | |||
t2 = 0:T:N2*T; | |||
t3 = 0:T:N3*T; | |||
x = sin(2*pi*t); % Signal that is sampled | |||
x2 = sin(2*pi*t2); | |||
x3 = sin(2*pi*t3); | |||
X2 = fft(x2); % DFT of long signal | |||
X3 = fft(x3); % DFT of short signal | |||
figure(1) %Original signal | |||
plot(t(1:500),x(1:500)) | |||
xlabel('Time (s)') | |||
ylabel('x(t)') | |||
title('Original Input Signal') | |||
figure(2) | |||
plot(t2(1:15),x2(1:15)) % Sampled signal | |||
xlabel('Time (s)') | |||
ylabel('x(t)') | |||
title('Sampled Input Signal') | |||
figure(3) %DFT of long signal | |||
plot(t2/(N2*T*T),abs(X2)) | |||
xlabel('Frequency (s)') | |||
ylabel('X(F)') | |||
title('DFT of 500 Samples') | |||
figure(4) % DFT of short signal | |||
plot(t3/(N3*T*T),abs(X3)) | |||
xlabel('Frequency (s)') | |||
ylabel('X(F)') | |||
title('DFT of 30 Samples') | |||
figure(5) % Shifted DFT of long signal | |||
XS2=fftshift(X2); | |||
f2=-1/(2*T):1/(N2*T):1/(2*T); | |||
plot(f2,abs(XS2)) | |||
xlabel('Frequency (s)') | |||
ylabel('X(F)') | |||
title('Shifted DFT of 500 Samples') | |||
figure(6) % Shifted DFT of short signal | |||
XS3=fftshift(X3); | |||
f3=-1/(2*T):1/(N3*T):1/(2*T); | |||
plot(f3,abs(XS3)) | |||
xlabel('Frequency (s)') | |||
ylabel('X(F)') | |||
title('Shifted DFT of 30 Samples') | |||
</pre> | |||
[[DH13_1.jpg]] | |||
[[DH13_2.jpg]] | |||
[[DH13_3.jpg]] | |||
[[DH13_4.jpg]] | |||
[[DH13_5.jpg]] | |||
[[DH13_6.jpg]] |
Revision as of 23:35, 6 December 2007
Problem Statement
Sample at 3Hz, take the DFT, and explain the results.
Solution
Here is the MATLAB code and resulting figures:
f = 3; % Sampling freq. T = 1/f; % Sampling period t = 0:.01:5; N2 = 500; % Number of sampling points N3 = 30; t2 = 0:T:N2*T; t3 = 0:T:N3*T; x = sin(2*pi*t); % Signal that is sampled x2 = sin(2*pi*t2); x3 = sin(2*pi*t3); X2 = fft(x2); % DFT of long signal X3 = fft(x3); % DFT of short signal figure(1) %Original signal plot(t(1:500),x(1:500)) xlabel('Time (s)') ylabel('x(t)') title('Original Input Signal') figure(2) plot(t2(1:15),x2(1:15)) % Sampled signal xlabel('Time (s)') ylabel('x(t)') title('Sampled Input Signal') figure(3) %DFT of long signal plot(t2/(N2*T*T),abs(X2)) xlabel('Frequency (s)') ylabel('X(F)') title('DFT of 500 Samples') figure(4) % DFT of short signal plot(t3/(N3*T*T),abs(X3)) xlabel('Frequency (s)') ylabel('X(F)') title('DFT of 30 Samples') figure(5) % Shifted DFT of long signal XS2=fftshift(X2); f2=-1/(2*T):1/(N2*T):1/(2*T); plot(f2,abs(XS2)) xlabel('Frequency (s)') ylabel('X(F)') title('Shifted DFT of 500 Samples') figure(6) % Shifted DFT of short signal XS3=fftshift(X3); f3=-1/(2*T):1/(N3*T):1/(2*T); plot(f3,abs(XS3)) xlabel('Frequency (s)') ylabel('X(F)') title('Shifted DFT of 30 Samples')
DH13_1.jpg DH13_2.jpg DH13_3.jpg DH13_4.jpg DH13_5.jpg DH13_6.jpg